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A B S T R A C T

Emission estimates of carbon-containing greenhouse gases (CO2, CH4) and aerosols (PM2.5) were made from 
forest fire across South Asia using Visible Infrared Imaging Radiometer Suite (VIIRS) based thermal anomalies 
and fire products. VIIRS 375 m I-band active fire product was selectively retrieved for the years 2012–2021 over 
forest cover across South Asia. Annual incidence of fire events across South Asia was 0.17 (±0.05) million (M) 
with robust spatio-temporal variation. Fire occurrences were mainly concentrated over the forest across Hindu 
Kush Himalayan region (HKH; 56%), Deccan Plateau (DP) and Central Highlands (CH; 34%). Monthly mean fire 
incidences emphasize February to May as a typical forest fire season, accounting 90% of annual fire counts. The 
highest fire pixel density (>1.5 km − 2 yr− 1) was noted over the tropical dry/moist deciduous and tropical semi- 
evergreen forests. Strong diurnal nature of fire radiative power (FRP) was evident with >85% of FRP linked to 
daytime retrieval. VIIRS based Fire Emission Inventory (VFEI, Version 0) was followed to constitute regional 
emissions of PM2.5 and green house gases from forest fire. Forest fire accounted a yearly emission of 91.58 
(±14.76) and 0.25 (±0.04) Tg yr− 1 CO2 and CH4 respectively, with 25.14 (±3.94) Tg of cumulative carbon 
release per year, i.e., roughly 1.3% of global fire-related carbon emission. Fire associated PM2.5 emission rate was 
0.60 (±0.10) Tg yr− 1, 95% of which emitted during peak fire season as was the case for carbon-containing gases. 
Forest fire across HKH (75%) and DP + CH (20%) predominately contribute to the regional carbon emission, 
while also accounting 68% (HKH) and 27% (DP + CH) of fire associated PM2.5 emission budget. With >70% of 
forest fires within South Asia being typically anthropogenic, forest fire appears to be a major sector of greenhouse 
gas and aerosols emissions, and necessitate planning and strict legalities to reduce emission load.

1. Introduction

Forest areas across the world have been experiencing rising levels of 
fire activity and severity that are unprecedented in the historical record. 
Megafires have been a recurring feature in forests and woodlands 
negating years of greenhouse gas emission cuts (Jerrett et al., 2022; van 
der Velde et al., 2021). While fire has many ecological benefits, it can 
also endanger human and animal life, and damage infrastructure under 
certain scenarios (Xu et al., 2020; McLauchlan et al., 2020; Duff and 
Penman, 2021). Among 40.6 million (M) sq. km of global forest 
coverage, about 0.98 M sq. km was affected by fire in 2015, accounting 
2.41% of entire forest cover (FAO, 2020a,b). In another estimate, 
approximately 3.4% of Earth’s land surface is estimated to burn every 
year (Giglio et al., 2018). Such estimates, however have large bias 
constrained by unavailability of high-resolution burned area data 

product (Roy et al., 2019; Roteta et al., 2019).
Typically, forest fire occurrence has marked spatial and temporal 

heterogeneity with tropical forest primarily experiences frequent fire, 
especially in central Africa, and South and North America. Majority of 
these fires are intentional to clean up the forest for agriculture and other 
commercial purposes, particularly in Africa, Southeast Asia and in South 
America (Field et al., 2009; Andela and van der Werf, 2014). In contrast, 
wildfires in Russia and Canada are mainly natural, often fires on 
northern boreal forest initiate by lightning (Chen et al., 2021) while 
forest/bush fire in north America and Australia has a notable link with 
hydroclimatic and geomorphic characteristics of the forest itself (Deb 
et al., 2020; Moritz et al., 2005). Forest fire in South Asia is primarily 
sporadic, mainly evident in India, Nepal and in Bhutan, with approxi-
mately 13–15 thousand sq. km yearly forest burnt area, accounting 1.7% 
of total forest cover (FAO, 2020a,b; FSI, 2023). India accounts a major 
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share of the South Asia forest fire with ~11 thousand sq. km burnt area 
in years 2019-20, close to 1.6% of total forest cover (FSI, 2020; 2023). 
Among different physiographic zones, Deccan (5630 sq. km) and Central 
Highlands (2160 sq. km) forest account 70% of total burnt area while 
northeast states of India, despite having higher satellite-based fire 
counts, accounts 13% (FAO, 2020a,b; FSI, 2020; 2023). Such hetero-
geneity in fire incidence is mainly linked to plant dry matter and climate, 
as dry deciduous and tropical evergreen forests including Eucalyptus 
and Pine plantations are more susceptible to forest fire compared to 
evergreen and montane temperate forest. In a recent estimate, 72 
thousand sq. km of India’s forest, i.e. 10% of total forest coverage is 
marked as extremely prone to fire while 252 thousand sq. km (36%) of 
forest as susceptible (FSI, 2019). In terms of fire incidence, 9.9% of forest 
land is frequently subject to fire occurrence with varying intensities 
while 54% of forest land occasionally exposed to forest fire (FSI, 2019; 
2020). Other South Asian countries like Bhutan (average burnt area: 250 
sq. km) and Nepal (4000 sq. km) accounts approx. 1.25% and 11% of 
national forest cover under frequent fire incidences (Bajracharya, 2002; 
RGoB, 2004).

Tracking forest fire and quantifying burnt area with expected emis-
sions has never been so feasible until the introduction of geospatial 
technology and sensing techniques to detect thermal anomalies at 
micro-scale (van der Werf et al., 2017; Gale et al., 2021; Wooster et al., 
2021). Initiated during 1960s as airborne thermal imagery, remote 
sensing of fire practically kicked off in 1980s by Advanced Very High 
Resolution Radiometer (AVHRR) with 3.7 μm channel. Detection of 
active fire and emission estimates at 1 km resolution was further 
advanced by the use of two 3.96 μm MIR channels in Moderate Reso-
lution Imaging Spectroradiometer (MODIS) sensor onboard Terra/Aqua 
satellites. Introduction of next-generation low earth orbit sensors like 
Visible Infrared Imaging Radiometer Suite (VIIRS) and Sentinel-3 Sea 
and Land Surface Temperature Radiometer (SLSTR), with sensors in 
geostationary satellites like Geostationary Operational Environmental 
Satellite, Himawari and Meteostat further refine active fire products. 
Detailed discussion on the evolution of fire sensing technique and 
comparison of data products are in Wooster et al. (2021) and Gale et al. 
(2021), and references there in. Clearly, based on detection technique, 
fire products vary with sensor and comparison among them need addi-
tional caution. For example, VIIRS-based average fire counts over India 
and Nepal usually 7.5 and 10.5 times of MODIS retrievals, respectively 
(Li et al., 2018; Vadrevu et al., 2019). However, it is being argued that 
VIIRS 375 m product provide improved detection of fire due to its 
sensitivity towards low intensity fire, greater spatial resolution and high 
thermal saturation point (Vadrevu et al., 2018; 2019; Li et al., 2018).

Forest fire is an important contributor of aerosols and greenhouse 
gases, and induce significant interannual variability in the atmospheric 
abundance of these climate forcing agents on a global scale (van der 
Werf et al., 2010, 2017; Bowman et al., 2020; Clarke et al., 2022). Global 
CO2 emissions from wildfires are roughly equivalent to one-fifth of total 
fossil-fuel emissions (van der Werf et al., 2017), thereby potentially 
establishing forest fire as a mainstream emission sector like any other 
conventional sources. van der Werf et al. (2017) concluded 2.2 × 109 ton 
of yearly global carbon emission from forest fire with major contribution 
from small scale fires across America, Europe and temperate Asia. Jer-
rett et al. (2022) argued that CO2 equivalent emissions from 2020 Cal-
ifornia forest fire was possibly two times to the entire greenhouse gas 
reductions in the state since 2003. van der Werf et al. (2010) reported 
that the contribution of forest fire (15%) to global carbon emission was 
relatively less compared to fires in grass land and savannas (44%). Shi 
et al. (2015) reaffirmed the contribution of forest fire to the emission of 
several greenhouse gases and aerosols over tropical regions using 
MODIS based burned area product. Since these forest fires are associated 
with huge emissions of aerosols and greenhouse gases, this could 
effectively accelerate change in regional climate thereby, reinforcing 
feedback loop. Likewise, Abatzoglou and Kolden (2013) emphasized 
climate change induced fuel dryness in the forests of western North 

America enhances its vulnerability to fire. On the contrary, Touma et al. 
(2021) highlighted the possibility of aerosol-driven cooling to counter-
balance greenhouse gas-induced extreme fire conditions throughout the 
20th century. Relative decline in aerosol loading in 21st century over 
Eastern North America and Europe however, offset such regional cooling 
resulting to further accelerate dryness, thereby enhancing fire-weather 
risk. Clearly, loss of forest-locked carbon due to recurrent fires leads 
to jeopardy the streams of ecosystem services and goods to the society, 
effectively turning forest as a major source of aerosols and greenhouse 
gases. It is noteworthy that fraction of such emitted carbon is expected to 
compensate due to subsequent regeneration of forest itself except in 
permanently deforested zone and in peatlands.

Biomass burning inventories typically use geospatial database of 
satellite/surface-based thermal anomalies, and constitute the emissions 
of trace gases and aerosols following either a bottom-up or a top-down 
approach. Several bottom-up global/regional biomass burning emission 
inventories have been developed based on surface data including active 
fire counts, fuel type and fire burned area to infer intensity of emission 
sources. On the contrary, top-down approach utilizes satellite-based fire 
radiative power (FRP) and species-specific emission factor to compute 
emissions. It is noteworthy that for a given species, the uncertainties 
among the inventories can be large and may differ by a factor of 3–10 
(Wang et al., 2018; Pan et al., 2020; Hua et al., 2023). Like, Bian et al. 
(2007) compared six biomass burning inventories for global CO result-
ing a 30% of deviation which could reach to 2–5 times magnitude on a 
regional scale. Plausible causes for such disparity could be many 
including simulation of missing precursors, resolution, model configu-
ration especially on an undulated topography, and dynamics of aerosols 
and its precursors.

Here, likely emissions of aerosols (as PM2.5) and greenhouse gases (as 
CO2, CH4) from forest fires across South Asia was explored using VIIRS- 
based active fire anomaly at I-band coupled with a high-resolution 
biomass burning inventory based on fire radiative power density and 
species-specific emission factors. To develop a mechanistic under-
standing of the possible contribution of forest fires on regional emis-
sions, we employed widely used criteria to detect forest fire, track its 
intensity and measure fire pixel density at highest possible resolution, 
extending our observation to a decade to constitute long-term trend and 
to assess geospatial variations. Emissions of greenhouse gases and 
aerosols from forest fire across South Asia is not documented yet except 
quantifying regional fires over specific forest area (Badarinath et al., 
2011; Vadrevu et al., 2012). Use of remotely sensed daily satellite 
product across South Asia with quality assured retrievals of thermal 
anomaly and fire with varying intensities is therefore, a key advance-
ment and can serve in improved parameterization of climate and air 
quality models over the region.

2. Study domain, datasets and methods

2.1. Description of the study domain

South Asia is one of the most unique and complex geographical re-
gions having many conventional sources of aerosols and co-emitting 
trace gases. Along with many conventional sources, fire on agriculture 
residues and forest contribute significantly to regional emissions of 
aerosols and long-lived greenhouse gases. South Asia sustains approxi-
mately 25% of world’s population with mere 2% of world’s forest 
coverage, amount to only 0.05 ha of per capita forest land (FAO, 2020). 
Total forest area within South Asia in year 2021 was approximately 0.9 
million sq. km, accounting 19.9% of the entire geographical area (World 
Bank, 2024). Among the South Asian countries, India poses the 
maximum land under forest coverage (0.72 M sq. km., in 2021) followed 
by Nepal (0.59) and Pakistan (0.36) while Bhutan (71.5%) and Nepal 
(41.6%) ranks top in terms of percentage of land area under forest cover 
(World Bank, 2024; FSI, 2023; Table S1).

South Asian Forest is moderately dense to open forest type (80%) 
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with proportion of very dense forest is relatively less (20%). A broad 
range of eco-climatic zones can also be noted within South Asia, with 
forest types ranging from tropical wet/semi-evergreen rainforests, 
tropical and sub-tropical deciduous forests, temperate and sub- 
temperate forest and desert jungles. As in Fig. 1, for comparative anal-
ysis among different forest systems, forest over South Asia was classified 
into Hindu Kush Himalayan (HKH) ranges of northern Pakistan, north- 
western India, Nepal and Bhutan to Indian state of Arunachal Pradesh, 
over the parts of north-east India and south-east Bangladesh; central and 
eastern parts of India over Deccan Plateau and Central Highlands (DP +
CH); in western Ghats (WG) and in Sri Lanka (SL). Diversity in climate, 
geology, soil quality and topography across South Asia leads to rise in 
diverse forest types. Likewise, tropical rain forest is prominent across 
Western Ghats, in northeast India, Sri Lanka and in the Andaman 
Islands. Tropical dry deciduous and dry evergreen forests present in the 
sub-Himalayan regions, in central and southern peninsula. Subtropical 
broadleaf and dry evergreen forests predominate in Himalayan range, 
and in northeastern and southeastern India (Ramakrishnan et al., 2012).

2.2. MODIS land cover

The latest Terra/Aqua MODIS L3 V6.1 Global Land Cover type 
product (MCD12Q1) at 0.5 km resolution was retrieved from LAADS 
DAAC site for years 2012 and 2017, to assess forest cover over entire 
South Asia. The MODIS land cover type is constituted based on super-
vised classification of MODIS reflectance coupled with prior ancillary 
information. MODIS land cover classification algorithm adopts forest 
classification scheme of International Geosphere-Biosphere Programme 
(IGBP) and other land type classification schemes. Here, land cover 
classes with value 1 (Evergreen Forest) to 9 (Savannas) was included as 
forest land, excluding only the land cover demarcated as shrublands. 
The years 2012 and 2017 were chosen to delineate the forest cover 
boundary assuming gradual changes in forest cover over time across 
South Asia (as in Table S2).

2.3. VIIRS active fire anomaly product

Launched under National Aeronautics and Space Administration 
(NASA) and the National Oceanic and Atmospheric Administration 

(NOAA) partnership, the next generation polar-orbiting operational 
environmental satellite system is currently on orbit under Joint Polar 
Satellite System (Goldberg et al., 2013; Schroeder et al., 2014). These 
polar satellites, in continuing the MODIS and MISR legacy, provide 
critical information on earth system science and improve numerical 
forecasting of weather and air quality. The VIIRS, a next generation 
scanning multispectral radiometer, was initially launched in October 
2011 aboard the Suomi-National Polar-orbiting Partnership (S-NPP) 
satellite and subsequently in NOAA-20 and NOAA-21 satellites. The 
VIIRS is instrumental in providing Environmental Data Records (EDR), 
columnar aerosol loading (DB/DT AOD) and active fire products at 
different resolutions. For active fire detection, VIIRS typically extends 
the MODIS Fire and Thermal Anomalies algorithm (MOD14 and 
MYD14), initially at 750 m (M-bands) using dual gain midwave infrared 
channel (4 μm) and a single gain thermal infrared (11 μm) channel data 
(Csiszar et al., 2014). The I-band based 375 m VIIRS active fire detection 
algorithm (Schroeder et al., 2014; Oliva and Schroeder, 2015) however, 
uses brightness temperature on middle (3.55–3.93 μm) and thermal 
infrared regions (10.5–12.4 μm), and is reported to perform better in 
capturing low intensity fires and to track fire growth (Schroeder et al., 
2014).

The VIIRS sensor on board Suomi National Polar-orbiting Partner-
ship (Suomi NPP) is a cross-track single-angle scanning radiometer that 
flies in a sun-synchronous orbit with equator crossing at ≈1:30 p.m. and 
≈1:30 a.m. local time. Due to its wide swath (~3000 km) and on-board 
pixel trimming algorithm, it provides global images of active fire on 
daily basis with better coverages on lower latitude. Owing to its better 
sensitivity towards low intensity fires and greater accuracy in detecting 
active fire, SNPP VIIRS 375 m (I-band) Collection-2 Level-1B VNP14IMG 
product was used to detect fires over the demarcated forest areas of 
South Asia in between January 2012 and December 2021, except 
monsoon months (July–Sept.). Among the fire mask SDS classes, only 
the nominal and high confidence fire pixels were taken into account 
avoiding potential contamination of low-confidence pixels with sun 
glint and low relative temperature anomaly at mid-infrared channel.

2.4. Fire radiative power

Fire radiative power (FRP) is used to define fire intensity and to 

Fig. 1. Spatial domain selected for retrieval of VIIRS thermal anomaly and fire data, (a) forest cover across South Asia based on MODIS land cover classification 
product for year 2017, and (b) spatial variations of decadal mean fire incidences at 10 × 10 km grid across forest biomes over South Asia. 
NOTE: In Fig. 1a, forest cover considering MODIS land cover year 2017 was depicted with green border while forest cover considering MODIS land cover 2012 is in 
supplementary file (Fig. S1). To denote spatial heterogeneity of forest fire incidence, fire counts is plotted in Fig. 1b. The background image indicates the hill shade. 
HKH: Hindu Kush Himalaya; DP + CH: Deccan Plateau and Central Highland; WG: Western Ghats and SL: Sri Lanka.
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capture the amount of radiative loss of energy from the biomass burning. 
FRP is frequently used as a proxy for measuring biomass consumption 
and smoke emissions through forest fire (Kaufman et al., 1998; Wooster 
et al., 2003; Nguyen and Wooster, 2020), to assess fire behavior and 
growth (Smith and Wooster, 2005), and in certain cases used to quantify 
emission from biomass burning (Ichoku and Kaufman, 2005) both for 
aerosols and green-house gases (Kumar et al., 2011; Vermote et al., 
2009). FRP is measured in terms of radiative fire power (MW/pixel) and 
can be integrated over time and space to compute fire radiative energy 
(mega joules, MJ). Both MODIS and VIIRS provide FRP using similar 
approach and has been briefed in Wooster et al. (2003) and Li et al. 
(2018). Briefly, both sensors utilize 4-μm band fire pixel radiance, 
background radiance of non-fire pixel, atmospheric transmittance and a 
sensor specific coefficient. For this analysis, FRP (in MW) was retrieved 
from the SNPP VIIRS C2 Level-2 (L2) 375 m active fire product 
(VNP14IMG) over the selected region of South Asia. The VNP14IMG 
relies on MODIS Thermal Anomalies and Fire algorithm using ~6-min 
orbital segments from several VIIRS scans. Clearly, VNP14IMG FRP 
product poses higher resolution and is more equipped to handle 
abnormal radiance in mid-infrared band compared to MODIS due to 
fewer pixel saturation. Here, FRP was used to detect fire over forest land, 
track fire intensity, to constitute trend in fire over forest land and was 
finally linked with emission of greenhouse gases and aerosols from 
wildfire. VIIRS FRP was further used to measure fire radiative energy 
integrating pixel-based FRP over spatio-temporal scale.

2.5. VIIRS-based fire emission inventory

With concurrent improvements in understanding of atmospheric 
dynamics of aerosols, its precursors and other greenhouse gases, and by 
the availability of higher computation facilities, biomass burning in-
ventories are now grown-up to be more accurate with the ability to 
provide high-resolution output on a global-scale. Among the top-down 
approaches, VIIRS based Fire Emission Inventory (VFEI, Version 0) by 
Ferrada et al. (2022) is novel based on the fact that it delivers daily 
emission fluxes at a resolution of 0.005◦ (0.5 km) for 46 species 
including greenhouse gases and aerosols. The VFEI utilizes thermal 
anomaly product from VIIRS on board Suomi-NPP with possible inclu-
sion of fire product from NOAA-20 in future update. The core configu-
ration of VFEI is based on using FRP density computed from middle and 
thermal infrared imagery from VIIRS I-band (Schroeder et al., 2014; 
Csiszar et al., 2014). This enables VFEI to detect small intensity fire more 
accurately compared to VIIRS M-band (0.75 km) and MODIS fire 
detection data product (1 km). Besides, greater swath of VIIRS sensor 
(~3040 km), less dependency on view zenith angle (Wang et al., 2018; 
Li et al., 2018) and higher saturation temperature against MODIS 
(Polivka et al., 2016) also help VIIRS I-band to deliver better thermal 
anomaly product. The biomass burning emission factor included in VFEI 
is based on emissions compiled by Andreae (2019) on six different bi-
omes, following several experimental outcomes on open biomass 
burning emissions including in-field campaigns. Sensor-specific con-
version factor applied on VFEI was the result of Heil et al. (2010) based 
on linear regression on MODIS FRP and biomass-combustion from GFED 
(V3.1). Both conversion factor and emission estimates are assumed to be 
climatologically representative of each biome, constrained using IGBP 
and Köppen climate classifications, and also adopted in VIIRS land cover 
classification product. Here, VFEI emission estimates on aerosols (PM2.5) 
and greenhouse gases (CH4 and CO2), available at 0.5 km resolution, 
were extracted over pre-selected forest cover across South Asia to 
constitute geospatial trend, to compare zonal disparity in emissions, and 
to relate possible implications on regional air quality and climate.

2.6. Geospatial analysis of forest fire emission

The study focused explicitly on quantifying forest fire incidences in 
all forest biomes across South Asia and associated emissions of 

greenhouse gases and aerosols. Initially, Terra/Aqua MODIS L3 Global 
Land Cover type product was processed for two years, 2012 and 2017, to 
account for any change in regional forest cover with time. Land cover 
classes marked with 1–9 were selectively considered under forest cover 
and a regional forest area map was created. Four specific forest zones 
were further segregated from the entire forest cover, namely HKH, DP +
CH, WG and SL to identify spatial heterogeneity in fire incidences and 
emissions. The SNPP VIIRS 375 m I-band active thermal anomaly and 
fire product was used to retrieve fire pixel and associated FRP, constrain 
by day and night satellite overpass, across all the selected forest systems. 
Both fire counts and FRP was initially processed for day and night, 
before aggregating it to constitute day-to-day and seasonal variations. 
The ratio between day-night aggregate fire pixel with unit area of the 
respective grid cell was computed to assess fire pixel density following 
the methodology as in Giglio et al. (2006). Both fire counts and FRP were 
compared spatially among the selected biomes and for individual 
months to assess heterogeneity in forest fire. The non-parametric Man-
n-Kendall test with Theil-Sen’s slope was applied on annual mean fire 
counts to determine the geographic trend of fire incidences. To consti-
tute emission of greenhouse gases and aerosol emission from forest fire, 
VIIRS based Fire Emission Inventory (VFEI, Version 0) by Ferrada et al. 
(2022) was considered because of its dependence on VIIRS I-band 
thermal anomaly product which are reported to be sensitive for large 
fire, having finer resolution and broader swath. Emission flux estimates 
of the forest cover across South Asia were computed based on product of 
fire pixel density, emission factors and conversion factor on a daily basis, 
averaging day-night overpass of VIIRS and applying several static cor-
rections to the active fire product. Emission flux (as in kg m− 2 s− 1) of 
designated greenhouse gases and aerosols (PM2.5) over selected fire 
hotspots was initially summed up daily basis to account cumulative 
emission, before computing spatial and temporal gradient. Emissions of 
greenhouse gases and aerosols were initially estimated for the all the 
forest cover across South Asia, before subject to regional analysis. 
Geospatial analysis of the emissions from the designated forest biome 
was also made to assess the signature of regional emission present within 
diverse forest type across South Asia.

3. Results and discussion

3.1. Spatial distribution of forest fire

Annual variations in fire counts in the forest across South Asia is 
shown in Fig. 2a. Annual aggregate fire counts over South Asia and in-
dividual forest biomes are indicative of regional heterogeneity in fire 
incidences between the years 2012 and 2021. Geospatial average of 
every single fire count detected by VIIRS across South Asia yield marked 
spatial heterogeneity that too varying considerably with time (Table S3). 
Likewise, yearly average (±SD) fire counts over South Asia was 179529 
(±46107) having median counts of 0.17 million (M) within a range of 
0.11–0.26 M fire incidences. Yearly time-series of fire incidences 
revealed robust interannual variations at the regional scale. Almost 56% 
of fire counts over South Asia was associated with the Hindu Kush Hi-
malayan Forest (HKH), transverse from northern mountain of 
Afghanistan to Himalayan ranges till the tropical forests of northeast 
India. On an average 99625 (±28465) fire events were retrieved yearly 
across the HKH forest with range varying from 0.06 to 0.15 M, having 
median fire counts of 0.09 M.

In terms of proportion to total fire occurrence, HKH forest share the 
major fraction of fire incidence (55–67%) throughout the monitoring 
period. Such high incidences of fire across HKH are possibly linked to 
rising temperature, human perturbations, decline in precipitation and 
snowfall, leading to change in forest ecology (Mina et al., 2023). How-
ever, in 2017–2018 fire season cumulative fire counts dipped in HKH 
compared to Deccan Plateau (DP) and Central Highlands (CH). Inter-
estingly, deciduous forest of HKH often leads to small and limited fire 
incidences due to greater humidity in root zone compared to coniferous 
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forest where high resin and dry biomass often leads to formation of 
intense and major fires (Negi and Dhyani, 2012). VIIRS based thermal 
anomalies does indicate the prevalence of high fire counts over the DP 
and CH region (65106 ± 23735) with median fire events of 0.06 M per 
year, accounting 36% of average fire incidences of entire South Asia. 
The tropical dry deciduous forests over DP and CH were reported to be 
extremely vulnerable to fire incidence (FSI, 2020). According to the FSI 
(2020) technical report, based on randomly selected forest fire zones, 
Central Highlands, Deccan Plateau and Eastern Ghats together account 
the highest proportion of forest affected with fire (79.7%), followed by 
Himalayan Forest, including northeast India (14%). Majority of these 
fire occurrences are strongly modulated by the biomass density, mois-
ture content of the dry vegetation biomass, high temperature and pre-
cipitation (Prasad et al., 2008). Rest of the forests i.e. in Western Ghats 
(WG) and in Sri Lanka (SL) were comparatively less prone to fire with 
yearly mean fire incidence of 12743 (±2423) and 2055 (±965), 
respectively. A MK trend analysis on annual fire count over individual 
forest cover indicates non-significant trend in fire incidences across all 
the zones over South Asia.

3.2. Spatial variations of fire season

Forest fire counts constrained by months across South Asian biomes 
are plotted in Fig. 3 with an indication of the period having peak fire 
incidences between 2012 and 2021. Monthly mean fire counts across the 
forest system indicate that fire incidences typically rise during the 
month of February before reaching to its maximum in March irre-
spective of geographical region.

An approximate 170% increase in mean fire counts in February 
compared to its precedent month clearly mark the initiation of the fire 

season over South Asia. Interestingly, increase in fire counts was 
spatially inconsistent with prominence over the central and southern 
region of the continent compared to the northern part. Monthly fire 
incidence reaches to 15752 (±8334) during February, mainly driven by 
the increased fire counts over HKH (7284 ± 2907) and in DP and CH 
(4987 ± 4506). A five time increase in fire occurrence was further 
accounted during March (SA: 77271) compared to February (SA: 15752) 
was consistent with the previous reports of fire occurrence in South Asia 
(FSI, 2020; 2023; Prasad et al., 2008; Mina et al., 2023). Increase in fire 
counts was specifically evident across the Himalayan Forest (470% in-
crease), and in Deccan Plateau and Central Highlands (510%) while an 
identical trend, although much lower in intensity, can also be noted over 
the mountainous forest in Western Ghats. This clearly marked the month 
of March having the most fire incidences and associated risks over the 
South Asian Forests, possibly linked with changes in hydroclimatic and 
geomorphic characteristics of the forest itself (Deb et al., 2020; Moritz 
et al., 2005). Quantifying the association between fire incidence and fuel 
moisture, vapour pressure deficit and other meteorological parameters 
can therefore, serves as a possible indicator of the exceeding incidence of 
fire during pre-monsoon season. On the contrary, forest fire occurrence 
at Sri Lankan (SL) island were high both in March (459 ± 370) and 
October (598 ± 777), much associated to human induced fire incidences 
compared to more of natural origin of forest fire at mainland South Asia. 
Overall, compared to typical forest fire season i.e. February to May, 
incidences of forest fire across South Asia were less during June to 
January, accounting only 10% of yearly fire events.

3.3. Spatial variations of fire density and fire radiative power

Fire pixel density was estimated at 0.1◦ grid to identify and sort 
forest cover in terms of frequency of fire incidence as retrieved by VIIRS 
I-band. Fire pixel density was assessed following the protocol as dis-
cussed in Giglio et al. (2006) and adopted by Li et al. (2018). Briefly, the 
ratio between day-night aggregate fire pixel against the area of the 
respective grid cell was computed and plotted in Fig. 4 following two 
separate time-constrained forest coverage over South Asia based on 
MODIS land cover product. The highest fire pixel density (>1.57 count⋅ 
km − 2⋅ yr− 1) was noted over the tropical dry/moist deciduous and 
tropical semi-evergreen forests over the Central Highlands, Deccan 
Plateau and in northeast India. This was in line with the reports of FSI 
(2012, 2023) where border districts of Chhattisgarh, Madhya Pradesh, 
Andhra Pradesh, Odisha and northeast India have been reported to have 
the most fire incidences. A moderate fire pixel density (1.20–1.57 count⋅ 
km − 2⋅ yr− 1) was noted in tropical dry/moist deciduous and temperate 
evergreen forests including Eucalyptus and Pine plantations over Hi-
malayan ranges in Uttarakhand and Nepal. On the contrary, forest over 
the western Himalaya including the Kashmir valley and in northern 
region of Pakistan and Afghanistan, and in Eastern part was found 
comparatively less fire prone. Moist deciduous forest over the north 

Fig. 2. Time-series of annual forest fire counts (a), and distribution of monthly forest fire counts within each forest system across South Asia (b). 
NOTE. In Fig. 2b, triangle and horizontal line indicate the mean and median, respectively.

Fig. 3. Identifying peak forest fire incidence season across biomes over South 
Asia. 
NOTE. The lines were smoothed for better visualization. Monthly mean fire 
counts in WG and SL were represented as *10.
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Western Ghats along the southwestern coast of Indian peninsula, espe-
cially over Indian state of Maharashtra and Karnataka, exhibited greater 
fire density compared to lower part. Such spatial heterogeneity is 
possibly related to more available moisture at root zone thereby, 
restricting fire to initiate and spread wildly.

The VIIRS I-band FRP i.e. spatial integration of energy (in MW) 
released per unit time from burning of biomass, and fire radiative energy 
(FRE) i.e. FRP integrated over time and space was assessed over forest 
land. In absence of time-resolved repeated observation on fire intensity 
to define energy emission from designated burnt area, we took day-night 
aggregate FRP as a proxy for total emission within a cross-section area. It 
should be noted that on a spatial scale FRP can be integrated to yield fire 
radiative energy when continuous data is available. Therefore, in many 
instances, geospatial modelling of fire emission was achieved reliably 
using FRP as a proxy of fire emission (Van Der Werf et al., 2017). As in 

Fig. S2, yearly variation in total FRP from each forest system did not 
yield significant variations. A MK test on annual FRP over South Asia 
yield insignificant trend with 0.02 MW decrease per year. Temporal 
variations in FRP among the forest cover is included in Fig. S3. Overall, 
73% of aggregate FRP over South Asia (1.56 × 106 MW) was associated 
with the burning in HKH (1.14 × 106 MW) while rest of the forest system 
altogether accounted 25%, primarily linked to the forest over DP and CH 
(21%; 3.30 × 105 MW). On the contrary, a robust day and night varia-
tions in retrieved FRP was noted with disproportionate variation in FRP 
among the forest systems, as illustrated in Fig. 5. Approximately, >90% 
of aggregate FRP was linked with daytime retrieval, more intensively 
across HKH and in SL (>95%) compared to forest over CH and DP (87%; 
Table S4). Such discrepancy in retrieved FRP was likely associated to 
relatively much lower fire counts with small intensity fire during night 
compared to daytime. As in Fig. S4, nighttime fire counts and associated 

Fig. 4. The VIIRS fire pixel density averaged over individual forest system (unit: count ⋅ km − 2 ⋅ yr− 1).

Fig. 5. Diurnal variations in fire radiative power, (a) day-night anomalies in percent contribution to annual mean FRP and (b–e) yearly accounts of day-night FRP. 
NOTE. Day-night aggregate FRP is marked in Fig. 5a with proportion (in %) retrieved between day and night overpass. Day-night resolved annual FRP from 2012 to 
2021 over each forest system across South Asia is marked in Fig. 5b–d.
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FRP appears much lower compared to daytime fire. Distinct diurnal 
variation in fire incidences is reported to associate with ecosystem type 
and primarily concentrate over the region where human induced forest 
fire predominates. Besides, Hély et al. (2003) concluded that during day 
time, relatively lower moisture content in biomass, wind profile and 
atmospheric temperature in general are more conducive to initiate 
greater fire occurrences compared to night. A similar robust diurnal 
variation in global forest fire both in MODIS and VIIRS thermal products 
was also accounted by Li et al. (2018).

3.4. Emission estimates of greenhouse gases and aerosols

3.4.1. Emission estimate of CO2
Emission of greenhouse gases from fire in different forest system is 

documented globally, with specific focus on carbon-containing gases 
including CO2, CH4 and other organic/inorganic aerosols. Annual 
contribution of agriculture, forestry, and other land use changes ac-
counts approximately 12 ± 4 Gt CO2-eq emission that is roughly 20% of 
net global anthropogenic greenhouse gas emission (Pathak et al., 2022). 
Besides, fire contributes 5% of immediate direct CO2 emission globally 
with annual C-emission varying from 1.8 to 2.0 Gt C yr− 1 (Zheng et al., 
2021). Understanding and quantifying the trends and drivers of forest 
fire in diverse forest covers across South Asia is therefore, imperative to 
recognize impacts of forest fire emissions on terrestrial C-budget. Fig. 6a 
indicates the annual emission rate of CO2 from forest fire across South 
Asia with emission estimate constrained by individual forest cover and 
emission year. On the basis of VIIRS thermal anomaly and VFEI emission 
estimate, South Asia forest fire associated average CO2 emission is likely 
to be 91.58 (±14.76) Tg yr− 1, with range varying from 75.14 to 120.80 
Tg yr− 1 in between 2012 and 2021, with a statistically insignificant (P: 
0.05) decreasing trend of 0.03 yr− 1. Total C-emission, constraining both 
CO2 and CH4 emissions from forest fire would be in a range of 25.14 
(±3.94) Tg C yr− 1, with a median value of 24.08 Tg C yr− 1 accounting 
roughly 1.30% of global fire-related carbon emission in a year. This 
simply portrays the context that beside emission of several tons of 
C-containing greenhouse gases from conventional anthropogenic emis-
sion sources, emission from forest fire across South Asia do serves as a 
major emission sector for greenhouse gases, especially for the 

Carbon-containing trace gases. This becomes even more compelling 
considering the fact that approximately 70–80% of such forest fires are 
human induced and can be controlled by creating mass awareness and 
implying strict legalities.

A major fraction of CO2 emission over South Asia was linked to forest 
fire over HKH mountain region, precisely because of its greater spatial 
extent, with annual CO2 emission rate of 69.23 (±13.50) Tg, accounting 
75.6% of total CO2-emission associated to forest fire (Fig. 6b). Fire in 
broad leaf deciduous forests across DP + CH have annual CO2-emission 
rate of 18.12 (±6.12) Tg, contributing roughly 19.8% of CO2-emission of 
entire South Asia. Rest of the forest fire across Western Ghats and in Sri 
Lanka together accounts 4.6% of CO2 emission, contributing 3.70 
(±1.01) and 0.53 (±0.26) Gt CO2 annually. In terms of relative contri-
bution of C-containing greenhouse gases (like CH4 and CO2) on total 
carbon emission budget from South Asia forest fire (i.e., 25.14 Tg C 
yr− 1), emission from HKH accounts the major fraction (19.01 Tg yr− 1, 
76%) followed by fire emissions from DP + CH (4.9 Tg yr− 1, 20%) while 
emissions from WG and SL share the remaining 4% of C-emission. Our 
results reciprocate well with the previous observation on high carbon 
emission from eastern Himalayan states by Sannigrahi et al. (2020) and 
considerably higher than CO2 emission rate (3.83 Tg yr− 1) reported from 
forest fire in mainland China (Fan et al., 2024). Interannual variation in 
fire associated CO2 emission (Fig. 6e) does not indicate any robust trend. 
Intraannual variation in emission however, strictly suggest that the 
major proportion of CO2 emission is linked to peak fire incidence period 
(Fig. S5), with highest being in March as the case in VIIRS forest fire 
counts, with consequent decrease in emissions as the monsoonal rain 
dominates over the South Asia. A robust variation in temporal emission 
pattern of CO2 is a signature of south Asian forest fire which peak during 
February to May. We note, February to May fire season accounts 90% of 
fire counts and 95% of CO2 annual emissions over South Asia.

3.4.2. Emission estimate of CH4
Contribution of forest fire to regional emission of CH4, a more potent 

greenhouse gas compared to CO2, was also assessed. Estimates of cu-
mulative annual emissions of CH4 is included in Fig. 6. In a given year, a 
total of 0.25 (±0.04) Tg of CH4 was estimated to be emitted from forest 
fire across South Asia with equivalent carbon emission of 0.19 Tg yr− 1. 

Fig. 6. Emission estimates of greenhouse gases and aerosols from forest fire across South Asia, (a) yearly emission estimate of CH4, CO2 and PM2.5 with relative 
contributions of individual forest cover to total emission load (in %), (b) estimate of annual emission from individual forest cover, (c) decadal trend in emission for 
individual species, (d) variations in yearly emission estimates, (e) time-series of yearly emission rate in Tg yr− 1 and (f) temporal variations in emission rate among the 
species in Tg month− 1. 
NOTE. In Fig. 6a, the values placed at base in each bar denote total emissions in a year (in Tg yr− 1). The triangle and horizontal bar in Fig. 6d indicate mean and 
median, respectively. The lines were smoothed for better interpretation and visualization.
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Overall, forest fire specific CH4 emission denote a statistically insignif-
icant (P: 0.05) decreasing trend with 0.03 decline in emission each year. 
Like CO2, robust variations in CH4 emission across forests system was 
also accounted with major proportion (77%) of CH4 originating from the 
fire across HKH, followed by fire across DP + CH (20%). Approximately, 
96% of annual CH4 emission was linked to emission during peak fire 
season (February–May), with 60% of emission solely in the month of 
March. There are global reports of CH4 emission from the forest fire with 
marked spatial biases and uncertainties. Liu et al. (2020) compared 
several inventories on CH4 emission from global fire database and re-
ported 33% coefficient of variation among the estimates between in-
ventories. A range in between 15 and 30 Tg yr− 1 CH4 emission was 
reported using MODIS based burnt area and fire counts. Fan et al. (2021)
accounted 0.02 Tg yr− 1 emission of CH4 from forest fire across China 
using MODIS based burnt area and land cover map. With similar MODIS 
based fire product, Shi et al. (2015) noted 30 Tg yr− 1 CH4 emissions 
solely from the biomass burning over the tropical region. Emission es-
timate of CH4 based on VFEI inventory corresponds well with emission 
from other regional sectors, but requires further refinement of the data 
product to consider diurnal fluctuation.

3.4.3. Emission estimate of PM2.5
Incomplete combustion of lignocellulosic biomass including cellu-

lose, hemicellulose, and lignin are also responsible for emission of fine 
particulates. Forest fire across South Asia was found to emit 0.60 
(±0.10) Tg yr− 1 PM2.5 varying considerably across the forest biomes 
(Fig. 7). Fire specific yearly emission of PM2.5 denote a statistically 
insignificant decreasing trend (− 0.02 yr− 1) in emission per year. A 
strong heterogeneity in forest fire emissions across forest cover was also 
noted. Fire over the HKH accounted 68% of aggregate PM2.5 emission 
from South Asia, with annual rate of 0.41 (±0.08) Tg PM2.5. Besides 
HKH, forest fire over DP + CH accounts 27% of aggregate PM2.5 emis-
sions with annual rate of 0.16 (±0.06) Tg. Like the emission of other co- 
emitting trace gases, fire season during February to May accounts 95% 
of PM2.5 emission (0.57 Tg), particularly in the month of March. When 
compared with open biomass burning emissions of PM2.5 from the entire 
South and Southeast Asia except northern parts of HKH (70◦–130◦ E, 0◦- 
28◦ N), Ferrada et al. (2022) reported an annual PM2.5 emission of 
approx. 4 Tg, with emissions predominately linked to peat fires over 
Indonesia and Malaysia.

3.5. Uncertainly in forest fire emission estimate

Several uncertainties remain in estimating emission from biomass- 
based fire, be it a top-down (FRP based) or bottom-up approach 
(burnt area). It is noteworthy that biomass-based emission inventories 

rely on certain products, either by space-borne sensors or by ground- 
based measurements, and none of them provide immediate observa-
tion of the emission profile of a species. Technically, each of the biomass 
based inventories confer generalization of emission estimates from lab 
experiments or from in-situ observation. Such emission flux may 
markedly vary with time and space, and it is extremely challenging to 
evaluate its appropriateness over individual biome. Another potential 
source of error is the cloud contamination of fire pixels when sensed 
using space borne sensor. Likewise, VFEI does not incorporate refine-
ment of fires potentially obscured by clouds, leading to reduced emis-
sion estimate over selected biomes, especially over the Siberia and 
Boreal America (Ferrada et al., 2022). Another limitation could be the 
unavailability of sub-daily emission estimates at global level as forest 
fires do pose diurnal cycle which potentially impact the resultant 
emission. In VFEI, a Gaussian distribution with fire peak at 14:00 local 
time is included (Ferrada et al., 2022), which could inherit considerable 
diurnal bias for the large fires. An infrequent VIIRS overpass compared 
to MODIS also generalizes FRP estimates in VIIRS fire products which 
was however, overcome by including a scaling factor irrespective of 
forest biomes. Inclusion of a universal scaling factor does require addi-
tional research for local optimization. Besides, a biome specific adjust-
ment factors was not also included in VFEI deliberating its application 
for global modelling studies.

4. Conclusions

Biomass burning emissions have been reported to contribute signif-
icant amount of carbon-containing greenhouse gases, aerosols, and its 
precursor species in to the Earth’s atmosphere which in turn reduce the 
extent of ecosystem services of forest by sequestering carbon within the 
biomass itself. Here, attempt has been made to quantify the emissions of 
greenhouse gases like CO2 and CH4, and aerosols (as PM2.5) from the 
year-long burning of forest fire across South Asia. Initially, Suomi-NPP 
onboard VIIRS sensor I-band active fire products and thermal anoma-
lies were retrieved for the years 2012–2021 (except monsoon months) to 
assess geospatial variations of fire incidences and fire radiative power 
across South Asia. Further, VIIRS-based biomass burning high-resolution 
emission inventory was followed to quantify possible emissions of trace 
gases and aerosols. Our attempt is novel considering no prior reports on 
forest fire emissions across South Asia which could well be utilized for 
developing mitigation strategies and improved parameterization of 
regional climate and air quality models.

Initially, forest cover across South Asia was mapped using Terra/ 
Aqua MODIS land cover data product. Forest cover was spatially sub- 
divided into four forest systems to ascertain geospatial variations in 
fire incidences and associated emissions. On an average, forest across 

Fig. 7. Geospatial variations in forest fire emission estimates (in kg yr− 1) of greenhouse gases and aerosols across South Asia.
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South Asia experiences 0.17 (±0.05) million (M) fire incidences, ma-
jority of which occurred in forest across Hindu Kush Himalaya (HKH, 
56%), followed by Central Highlands (CH) and Deccan Plateau (DP, 
36%). Most of these fire incidences were however, linked to high tem-
perature, fuel availability and biomass dryness coupled with human 
influences. A marked seasonality in fire incidences were also noted with 
fire predominately retrieved in between February and May with higher 
radiative power compared to wider prevalence of very small and less 
intense fires during October to January months. The tropical dry/moist 
deciduous and semi-evergreen forests over the Central Highlands, Dec-
can Plateau and in northeast India were most prone to frequent fire 
incidences. A robust diurnal variation in fire radiative power was also 
accounted in VIIRS retrievals which was explained by the incidence of 
relatively lower fire counts and small intensity fire during night 
compared to daytime.

Forest fire across South Asia contribute approximately 1.3% of global 
carbon containing greenhouse gas emissions with annual emission in a 
range of 25.14 (±3.94) Tg C year− 1, and a median of 24.14 Tg C year− 1. 
Majority of such carbon was associated to emission of CO2 with prime 
contribution from fire across HKH forest and forest fire over Central 
Highlands and Deccan Plateau. Emission of CH4 from fire also recipro-
cate the similar trend with annual emission rate of 0.25 (±0.04) Tg and 
equivalent carbon emission of 0.19 Tg yr− 1. In terms of PM2.5, fire 
associated emission rate was 0.60 (±0.10) Tg yr− 1 with major contri-
bution from forest fire across HKH and Central Highlands and Deccan 
Plateau. Yearly emission rate of all the species however, accounts sta-
tistically insignificant declining trend. On closing, despite having many 
uncertainties in estimating biomass burning emissions either by using 
space-borne sensor or in-situ experiments, these biomass burning in-
ventories serves well in estimating emissions from fires across varying 
landscape. Our analysis provides a brief overview on how such emis-
sions varies across geographical region in South Asia and could well be 
useful for fire management and in reducing emissions.
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