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A B S T R A C T   

With rising global temperatures, extreme weather events have become more frequent, intense and 
of longer duration. CMIP6 GCMs provide improved climate simulations that need robust evalu-
ation for historical period for reliable future projections. The present study assesses the ability of 
bias corrected CMIP6 14 Global Climate Models (GCMs) in simulating heat wave over India for 
March–June during the historical period (1951–2014). Heat waves were identified using IITM 
criteria. Model biases were removed using variance scaling bias correction method that showed 
higher correlation (0.93) and lower root mean square error (2.15) and improvement in approx-
imating the inter-annual variability as well as spatial patterns as observed maximum temperature 
after bias correction. Evaluation of model performance for 95th and 99th percentile maximum 
temperature and heatwaves showed that most of the models simulate these extremes similar to 
observation. Northwestern, Central and South-central regions recorded highest number of heat-
waves with a frequency of 50 heatwave days/decade, which were captured by the most of the 
GCMs varying in decadal frequency over the region. Among the GCM, although all models were 
found competent, ACCESS-ESM1–5, MPI-ESM1–2HR and MRI-ESM2–0 models were found to be 
the best performing models for extreme indices and heat wave simulation over India. The study 
will aid to the current understanding of CMIP6-GCMs performances over the different meteoro-
logical subdivisions of India and pave way for future projection of heat waves as well as reduction 
in uncertainty among the models.   

1. Introduction 

Extreme weather events in the wake of changing patterns of climate have emerged as a serious hazard around the globe and 
particularly over South-Asia region, causing huge loss of life as well as economic impacts (Chaudhury et al., 2000; Campbell et al., 
2018; Mall et al., 2019, Hambrecht et al., 2022). The Intergovernmental Panel on Climate Change (IPCC) reports have stated that these 
events are likely to increase manifold in the future by the end of 21st century (Stocker et al., 2013; IPCC, 2021;). South Asian region has 
been witnessing rise in temperature which may cause rapid risk escalation in future, resulting in irreversible consequences, 
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development issues, increased susceptibility to climatic hazards, conflict, and inequity (IPCC, 2021; Diffenbaugh and Giorgi, 2012; 
Mani et al., 2018). As per studies, in recent decades global region of heatwave hotspots are on the rise and there is an increase in the 
probability of occurrence of very extreme and extreme heatwave episodes by the end of 21st century (Russo et al., 2014). Com-
pounding of heatwaves with drought and other extremes have increased the risk for the vulnerable population exacerbating its impact 
on the population (Baldwin et al., 2019). While Paris Agreement aims to limit the global warming to 1.5◦-2 ◦C, it is still alarming as 
heatwave days are projected to increase by 4–34 days every season for every 1 ◦C rise which may be higher for regions (Perkin-
s-Kirkpatrick and Gibson, 2017). Due to this unprecedented global warming climate extremes have shown a rise in frequency and 
severity over South-Asia and future projections shows a further rise in extremes including heat waves, flood and drought over the 
region making it as one of the global hotspots of climate change (Mukherjee et al., 2018; Aadhar and Mishra, 2020; Singh et al., 2021a, 
2021b; Mall et al., 2022). There has been an unprecedented rise in the temperature extremes, which is likely to rise in future warming 
scenarios as well (Fischer et al., 2021; Saeed et al., 2021; Yaduvanshi et al., 2021; Singh and Mall, 2023; Singh et al., 2023). In addition 
to the high temperature the increase in minimum temperature have also been found to contribute to mortality in the South Asian 
region (Dimitrova et al., 2021; Mall et al., 2021). Perkins-Kirkpatrick and Gibson, 2017 proposed to develop a global unified network 
for better measurement and understanding of heatwaves and mechanisms behind it, as scientific literature lacks to define a complete 
mechanism of heatwaves. However, heat wave events have been found to be consistently strengthening crossing previous thresholds 
all over the world and impacting the global population as well as agriculture sector significantly (Knox et al., 2012; Lobell et al., 2012; 
Perkins, 2015; Singh and Mall, 2023). 

India is among one of the most vulnerable countries to the rising extremes particularly heat waves observing numerous episodes of 
mortality in the recent decades and so heat wave events add to the morbidity and mortality burden of the country (Rohini et al., 2016; 
Singh et al., 2023; Singh et al., 2021a–d; Rajput et al., 2023; Singh et al., 2021a, 2021b). Pai et al. (2004) also observed increase in 
regional coverage, persistency and occurrences of heat-wave events during the period 1991–2000. The most populated and agriculture 
dominated region of India within the northern, central and northwestern parts have witnessed a multifold rise in heatwave frequency, 
duration and intensity in recent decades due to increase in maximum temperature (Dash and Hunt, 2007; Rohini et al., 2016; Panda 
et al., 2017; Singh et al., 2021a, 2021b). Among the most severe heat wave episodes over India, the year 1978–1999 observed huge 
mortality in the northern and eastern states of the country followed by many such episodes in the recent decades (De, 2000; Rohini 
et al., 2019). While heat wave events are increasing the efforts to model these extremes for generating accurate regional projections 
using regional and global climate models are also increasing. Simulation of extreme heat events using climate models have been one of 
focus research area of the climate scientists. Several studies have projected changes in heat wave events over India using both global 
and regional climate models which showed multifold rise in heat wave events in the future (Mishra et al., 2020; Rohini et al., 2019; 
Singh and Mall, 2023). 

Among such efforts the Coupled Model Intercomparison project (CMIP) is an inter-model comparison project working primarily to 
improve model performances in simulating historical, present and future climate changes arising from natural changes under different 
emission scenarios based on radiative forcing scenarios in a multi-model framework. CMIP mainly focuses about the response of earth 
in different forcing scenarios, origins and consequences of systematic model biases and most importantly estimation of future climate 
changes for the variations in the forcing scenarios (Eyring et al., 2016). The modeling community strives to continuously improve the 
model simulations with each phase of the experiment and recent CMIP6 generation models are the most updated models that have the 
potential to offer new insights in the understanding of the global climate with better regional projections as well. In the CMIP6 phase 
different shared socioeconomic pathway (SSP) scenarios have been utilized for future extreme climate characterization, to understand 
the behavior of climate in different forcing scenario (Gusain et al., 2020; Schlund et al., 2020; Su et al., 2021). CMIP6, the most recent 
phase GCMs are being analyzed for their ability to simulate historical temperature variability and trends against observed global land 
surface temperature data indicating large variability in across model biases and regions (Fan et al., 2020; Almazroui et al., 2021; Zhao 
et al., 2023). 

According to Fan et al., 2020, CMIP6 future projections indicate increased frequency and intensity of temperature extremes around 
the globe. CMIP6 experiment have also reported near permanent marine heatwaves occurrences around the globe (Plecha and Soares, 
2020). The CMIP6 phase of the CMIP experiment provides the most recent climate projections with state-of-the-art climate models, 
which have been found satisfactory in various recent studies assessing extreme temperature events, extreme precipitation events in 
South Asia and Indian Summer Monsoon (ISM) simulations (Stouffer et al., 2017; Gusain et al., 2020; Seneviratne and Hauser, 2020; 
Hamed et al., 2022). An intercomparison study of CMIP5 and CMIP6 models over Korea shows that heatwaves and related tele-
connection indices are better simulated by CMIP6 models than CMIP5 models (Kim et al., 2020). While model simulations may be 
perturbed by the associated bias, Mishra et al., 2020 showed that 13 biases corrected GCM output of CMIP6 experiment project 3◦ to 
5 ◦C of warming along with 13–30% wetter climate by the end of 21st Century over South Asia. Several studies have been carried out 
using the CMIP6 GCMs for heat wave simulation over different cities and regions of India (Chatu et al., Das and Umamahesh, 2022; 
Dash et al., 2022; Nandi and Swain, 2022; Shukla and Attada, 2023). Kumar et al., 2022 analyzed heat wave events over four Indian 
cities. Das and Umamahesh, 2022 projected and compared heat wave occurrences over India using CMIP5 and CMIP6 GCMs for both 
representative concentration pathway (RCP) and SSP scenarios. The study found that heat wave is projected affect the presently 
unaffected regions of the country particularly, northeast, southern and western region and the magnitude projected under RCP sce-
narios are larger than the SSP scenarios. Though a comprehensive analysis, the study could have been more robust if there had been 
evaluation of heat wave simulations by the CMIP6 models for historical period for against the observation to account for uncertainty in 
projections. Dash et al., 2022 in a recent study over metropolitan cities of India using CMIP6 models found that frequency of warm 
nights and hot days the Chennai, Mumbai, Guwahati and Delhi (Dash et al., 2022). Nandi and Swain, 2022, evaluated the CMIP6 GCMs 
and analyzed future changes in heat wave characteristics over three South Indian Cities namely, Bangalore, Chennai and Hyderabad. 
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While the evaluation showed EC-Earth3-Veg model to best among 9 GCMs which shows that Chennai will be most affected by heat 
waves in future. Goyal et al., 2023 assessed the heat wave changes over the Indian smart cities and observed that the Coastal, Interior 
Peninsular, and North-Central regions with Thiruvananthapuram city observing most heat wave hazard in the future under SSP 245 
and 585 scenarios. Shukla and Attada, 2023 examined the multi-model mean (MME) of 16 CMIP6 GCMs for the simulation of Universal 
Thermal Climate Index (UTCI) mean climatology for summer season over the northwest India (NWI) with ERA5 reanalysis data. The 
study found showed an increased thermal stress over NWI in the historical period which is captured by the MME and is projected to rise 
further at the rate of 0.09 ◦C per decade, 0.26 ◦C per decade, and 0.56 ◦C per decade in SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenario 
rapidly raising a serious concern over the region. Rao et al., 2023 adopted a new approach of understanding the future risk associated 
with heat waves by using varying hazard thresholds such as fixed and decadal moving thresholds to declare heat wave and assess the 
future heat wave changes using CMIP6 models under different SSP scenarios over India. The findings reavealed that most of the models 
exhibit a higher mean temperature than the observed and further a significant increase in the heat wave in near future and far future 
using fixed thresholds as compared to the moving threshold which projected more increase in the far future period. However, 
Bhattacharya et al., 2023 found that CMIP6 models failed to approximate the spatial distribution of heat waves and cold waves over the 
over the climatic zones of India while investigating the trend and decadal variability in the frequency of heat waves and cold waves as 
compared to the observation. The above studies show that much emphasis is given to analyse the future changes in heat wave using 
CMIP6 models over isolated cities and climatic zones of India. However, comprehensive research evaluating the performance of CMIP6 
experiments based heat wave events over the entire India region focusing on the meteorological subdivisions of the country. While 
future projections provide a set of possible sceanrios of heat wave hazard over the country, the reliability of these future projections 

Fig. 1. India and its 36 meteorological subdivisions with topography.  
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require analysis of the ability of CMIP6 GCMs in simulating temperature extremes as well as heat wave events over the region. As the 
GCMs suffer from representing the sub-grid features accurately when compared to downscaled simulations it will be interesting to 
observe how the recent and most updated CMIP6 GCMs perform in representing the climatology over India. 

The present study aims to evaluate the ability of CMIP6 GCMs in simulating daily gridded maximum temperature, climatological 
mean meaximum temperature, temperature extremes indices and frequency of heatwave events over the meteorological subdivisions 
of India for March–June during 1951–2014. The 14 CMIP6 model outputs which are available for the variable tasmax with consistent 
variant label r1i1p1f1 (for realization, initialization, physics and forcing) have been used for the in the study for studying the extreme 
temperature characteristics and simulation of heat wave over India and its meteorological subdivision. The study also intends to 
demonstrate the efficiency of bias corrected CMIP6 GCMs in simulating the seasonal maximum temperature climatology over India. 
For this investigation, maximum surface temperature variable of GCM outputs have been bias corrected using variance scaling 
approach to enhance model output against observed IMD data and validated as well. Further bias corrected data has been used to 
simulate extreme temperature indices and percentile-based threshold heat wave events over the country. This study will highlight the 
ability, deficiency and uncertainty associated with CMIP6 models in simulation of temperature extremes over different regions of 
India. 

2. Data and methodology 

2.1. Study area and data 

The study is performed over India lying within the geographical extent of 8◦4′N-37◦0.6′ N latitude and 68◦7′E-97◦25′ E longitude. 
India covers a land area of 3.29 million square kilometers and is home to 1.35 billion people. The study has been carried out over the 36 
meteorological subdivisions of India which are categorized based on homogeneity of the climate and differ in topography which 
influence the climate of the region (Attri and Tyagi, 2010) (Fig. 1). 

India is one of the most heat wave affected region as March–June (MAMJ) months witness extreme heat over the subcontinent 
because of the development of pre-monsoon heat low. Around 3–7 heatwave spells are recorded every year during the MAMJ months 
(Rohini et al., 2019; Singh et al., 2021a, 2021b). Global climate models being coarser face challenges in the representation of the 
climate over such varied topography of the different subdivisions particularly in coastal and mountainous regions (Singh et al., 2021a, 
2021b). The study intends to assess the model performance over the various meteorological subdivisions to find the best suitable model 
that performs cumulatively well for all of these subdivisions to account for the variation due to differing topography and climatological 
conditions. The study uses 14 GCMs from CMIP6 experiments archived at Earth System Grid Federation data node of World Climate 
Research Program (WCRP) (https://esgf-data.dkrz.de/search/esgf-dkrz/) for heat wave simulation analysis. The CMIP experiment 
stems from the need to improve the understanding of the past, present, and future climate change due to natural, unforced variability 
as well as radiative forcing changes in a multi-model environment. The CMIP6 phase of the CMIP experiment is the most updated 
generation of models and is a step ahead in terms of evolving from a single step central activity to a federal structure with 21 individual 

Table 1 
Details of CMIP6 GCMs used in the study.  

Sr. no. GCMS Variant-id Driving model Institution Spatial 
Resolution 

References 

1. 
2. 

ACCESS- 
ESM1–5 
ACCESS-CM2  

r1i1p1f1 & 
gn 

Commonwealth scientific and industrial research organization/ 
Australia 

1.25◦ × 1.25◦

1.25◦ × 1.25◦

Bi et al. (2020) 
Ziehn et al. (2020) 

3. AWI-CM-1-1- 
MR 

r1i1p1f1 & 
gn 

Alfred Wegener Institute Center for Environmental data analysis/ 
Germany 

1.0◦ × 1.0◦ Semmler et al. (2020) 

4. BCC-CSM2-MR r1i1p1f1 & 
gn 

Beijing Climate Center (BCC) China Meteorological 
Administration/China 

1.125◦ × 1.125◦ Wu et al. (2019) 

5. Can-ESM5 r1i1p1f1 & 
gn 

Canadian Centre for Climate Modeling and Analysis/Canada 2.8◦ × 2.8◦ Swart et al. (2019) 

6. CMCC-ESM2 r1i1p1f1 & 
gn 

Euro-Mediterranean Centre on Climate Change coupled climate 
model/Italy 

0.9◦ × 1.25◦ Lovato et al. (2022) 

7. FGOALS-g3 r1i1p1f1 & 
gn 

Chinese Academy of Sciences (CAS)/China 2.25◦ × 2.0◦ Li et al., 2020 

8. MIROC6 r1i1p1f1 & 
gn 

Model for Interdisciplinary Research on Climate (MIROC)/Japan 2.3272◦ ×

1.1636◦

Tatebe et al. (2019) 

9. 
10. 

MPI-ESM-1-2- 
LR 
MPI-ESM-1-2- 
HR 

r1i1p1f1 & 
gn 

Max Plank Institute for Meteorology/Germany 1.875◦ × 1.875◦ Mauritsen et al. 
(2019) 

0.9375◦ ×

0.9375◦

Müller et al. (2018) 

11. MRI-ESM2–0 r1i1p1f1 & 
gn 

Meteorological Research Institute (MRI)/Japan 1.125◦ × 1.125◦ Yaduvanshi et al. 
(2021) 

12. 
13. 

NorESM2-MM 
NorESM2-LM 

r1i1p1f1 & 
gn 

Norwegian Climate Centre/Norway 0.9375◦ × 1.25◦ Seland et al. (2020) 
1.875◦ × 2.5◦ Seland et al. (2020) 

14. TaiESM1 r1i1p1f1 & 
gn 

Taiwan Earth System Model/Taiwan 0.9◦ × 1.25◦ Lee et al., 2020  
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model intercomparisons, a diagnostic experiment called DECK and historical simulations. The CMIP6 historical simulations are 
available from 1851 to 2014 and largely based on the observations. The simulations will assess the ability of models as compared to 
observation encompassing changes from natural forcings such as solar variability and volcanic aerosols and anthropogenic induced 
forcings such as CO2 concentration, aerosols, land use etc. (Eyring et al., 2016). Table 1 contains the details of the models used in the 
study for historical maximum temperature data on a daily frequency for the period 1951–2014 with common variant label r1i1p1f1, 
and native grid. Maximum temperature data was further extracted from the GCM data for the India region. Output of all the models 
were interpolated by performing nearest neighbor remapping to a homogenous 1.0◦ × 1.0◦ spatial resolution. Daily gridded maximum 
temperature data at 1◦ × 1◦ from India Meteorological department (IMD) for the period 1951–2014 (64 years) has been used as 
reference data. This gridded daily maximum temperature data was developed by using observations from 350 stations across India 
using Shephard's method (Srivastava et al., 2009). The heatwave assessment requires reliable maximum temperature data whereas the 
GCMs of CMIP6 experiment shows significant biases with respect to IMD data. So, meteorological variables from the output of GCMs 
must be bias corrected for reliable outcomes. 

2.2. Variance scaling 

Various bias correction methods are widely used to remove the biases in the climate data owing model systemic errors such as 
Variance Scaling, Mean Scaling, Quantile Mapping etc. Variance Scaling methods have been found to be significantly effective for 
removal of model biases for temperature variable (Teutschbein and Seibert, 2012; Bhatla et al., 2020; Singh et al., 2021a, 2021b). It 
scales the mean as well as the variance of the model output with respect to the observation and so after the model output is scaled the 
mean and variance of the bias corrected model data perfectly agrees with the reference data (IMD data for this study). Following the 
efficiency of the method the study utilizes variance scaling approach for bias correction of all 14 CMIP6 model output over India for the 
historical period (1951–2014). 

Following steps are followed for variance scaling of historical model output:  

(i) Difference of monthly mean values of model from observed is added to the model data 

T1(d) = Tm(d)+ μ (To(d) ) − μ (Tm(d) )

(ii) Deviations of model data from long term monthly mean are evaluated. 

T2(d) = T1(d) − μ (T1(d) ).

(iii) Ratio of standard deviation of long term observed data to model data are multiplied by the result of Eq. (ii). 

T3(d) =
T2(d) × [σ (To(d) ) ]

[σ (T2(d) ) ]

(iv) Long term monthly mean data are further added to Eq. (iii) to produce variance scaled model ouput. 

Tmv(d) = T3(d)+ μ (Tm(d) ).

The output of Eq. (iv) Tmv(d), is the final bias corrected model output using variance scaling method. Here To(d) and Tm(d) are 
observed and model data respectively, whereas μ and σ are the operators for mean and standard deviation. For the validation of bias 
corrected model data, Taylor diagram constituting Correlation Coefficient (CC), Root Mean Square Deviation (RMSE) and Standard 
Deviations (SD) are calculated with IMD data as reference (Mann, 1945; Taylor, 2001; Gleckler et al., 2008). Probability distribution 
function and cumulative distribution functions are analyzed for the investigation of distribution pattern. 

2.3. Analysis of temperature extremes 

To analyse the ability of the model temperature extremes over India, 95th and 99th percentile values representing the extreme 5% 
and 1% of the daily temperature data over the study period were estimated. To identify heatwave events by analyzing the positive 
departure of maximum temperature from its daily normal value IITM criteria has been used (Mandal et al., 2019; Singh et al., 2021a, 
2021b). As India witnesses extreme temperatures during the pre-monsoon season, heatwaves are computed for the March–June 
(MAMJ) months for the study period. Method for identifying heatwave using IITM is described by following steps:  

(i) Maximum temperature should be greater than 95th percentile value.  
(ii) Departure from normal should be >3.5 ◦C if Tmax >36 ◦C.  

(iii) Heatwave is declared when Tmax >44 ◦C. 
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Therefore, heatwave is noted if the maximum temperature of region exceeds the normal temperature by 3.5 ◦C. On the other hand, 
if maximum temperature surpasses 44 ◦C heatwave is declared regardless of the percentile value. Further, Mann Kendall trend test has 
been used to analyse trend in maximum temperature as well as heat wave over India (Singh et al., 2021a, 2021b). 

3. Results and discussion 

The findings of the study can be explained into two parts, where the first objective is to improve the CMIP6 model outputs by 
removing the biases present in the data using variance scaling method. Whereas the second objective focuses on analyzing the extreme 
temperature indices and heatwave events over India for the period 1951–2014 using the bias corrected model data. The analysis of 
heatwaves over India using CMIP6 GCM data requires bias correction to make the model outputs more robust. In this study the 
variance scaling bias correction approach has been employed, which improves the variance of the model outputs by matching it with 
variance of the observed data. For the analysis, bias corrected model data has been further evaluated against the observed data for the 
period 1951–2014. 

3.1. Evaluation of model performance 

Fig. 2 shows the Probability Distribution Function (PDF) of historical maximum bias-corrected and raw/uncorrected CMIP6 model 
output for the period 1951 to 2014 (MAMJ) against the observed. Prior to bias correction, the results of the CMIP6 model exhibited 
higher standard deviations and lower mean maximum temperatures as compared to observed. The probability distribution shows that 
the models exhibit both cold and warm bias as the lower tail of the distribution lies below − 20 ◦C and the upper tail reaches above 
50 ◦C. However, the distribution shows that models underestimate the daily maximum temperature as the majority of models 
approximate the peak with a maximum probability at a surface temperature of slightly below 30 ◦C, where the observed temperature 
peak is around 32 ◦C. Variance scaling approach corrects the distribution of model data based on the mean, which initially displayed 
higher standard deviations than the IMD. After removal of bias in the model data, the dispersion from the mean and the mean value of 
the majority of the models were both improved satisfactorily and so agreed with the IMD mean. Both the cold and warm bias is 
significantly reduced as both the tail of the distribution matches closely with the observation after bias correction showing the 
improvement in the daily maximum temperature distribution. 

Moreover, Taylor diagram of bias-corrected daily mean surface maximum temperature data of 14 CMIP6 models showed the 
Pearson CC, normalized SD and RMSE of different models with respect to IMD observed data over India (Fig. 3). The IMD baseline daily 
mean surface maximum temperature is represented by a red circle dot on the x-axis, whilst the CMIP6 raw and bias corrected daily 
mean surface maximum temperature data are represented by different geometric dots in the graphical space. The maximum surface 
temperature data from the IMD and model outputs are used to calculate the CC, SD, and RMSE for the historical period. Very significant 
standard deviations from IMD data, ranging from 8 to 12, have been observed in the raw model results (Table 2). Although, Correlation 
Coefficient values have been found significant ranging from 0.73 to 0.87 but the Root Mean Square Deviations have been found high, 
showing the dispersion of data (Table 3). 

After bias correction, the CC between model outputs and IMD data improved significantly and the RMSE and SD values also 
improve, assuring that the output is consistent with the observed data. The multi-model mean shows best agreement with the 
observation. TaiESM1 was found to have highest correlation of 0.93, lowest RMSE of 2.15 and standard deviation of 5.16 after bias 
correction while NorESM2-MM showed relatively lower CC (0.86), higher RMSE (2.99) and SD (5.78). However, all of the CMIP6 
model outputs showed similar results of the metric with minor variations (Table 2). 

Followed by Taylor diagram, the yearly mean of temperature simulated by the models was further compared with the observations. 

Fig. 2. Probability distribution function of maximum temperature data of CMIP6 models.  
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It was found that all of the models underestimated the yearly mean for the historical period (1951–2014) for India, simulating within 
the range of 23 ◦C -27 ◦C whereas the observed yearly mean simulated around 30 ◦C (Fig. 4). The multi-model mean output showed 
highest variation against the observation. However, variance scaling was found to have improved the model simulated yearly mean. 
The coherency of the bias corrected data is more vigorous in ACCESS-ESM1–5, AWI-ESM1–1MR, MPI-ESM-HR and MIROC6 models 
with the observation. 

Quantiles and mean of maximum temperature data distribution of all models show lower values as compared to IMD data. Un-
corrected model outputs possess lesser variability as compared to the observed maximum temperature. For observed maximum 
temperature, the 25th and 75th quantiles are 28 ◦C and 32 ◦C, respectively, which is higher than the corresponding quantiles for all the 
model-simulated values. First and third quantiles for bias corrected models were reported approximately 26 ◦C and 33 ◦C, respectively. 
Nevertheless, a few outliers were also found in ACCESS-CM2, BCC-CSM2-MR, and NorESM2-LM. As compared to the uncorrected 
model data, where all model medians were much below 30 ◦C, the median for bias corrected models were improved to 30 ◦C as of IMD 
data. Since, the variance scaling based bias correction method improves scales the model outputs on both mean and standard deviation 
metric with respect to the observation so after bias correction the maximum temperature distribution with mean, median and quantiles 
matches well with the observation and have been shown by several studies related to extreme temperature and rainfall events 
(Teutschbein and Seibert, 2012; Bhatla et al. 2020; Singh et al., 2021a, 2021b). It is due to this reason that the box plots of bias 
corrected maximum temperature data shows improvements in mean distribution with respect to IMD data as shown in Fig. 5b. 

Fig. 3. Taylor diagram of Tmax variable for 14 CMIP6 models with IMD as reference data.  

Table 2 
Standard deviation, Correlation coefficient, and root mean square error of raw and bias corrected CMIP6 model output.  

Models Correlation Coefficient Root Mean Square Error Standard Deviation 

Raw Bias Corrected Raw Bias Corrected Raw Bias Corrected 

ACCESS-CM2 0.72 0.87 7.60 2.91 10.59 5.72 
ACCESS-ESM1–5 0.76 0.88 7.53 2.86 10.90 5.72 
AWI-CM1–1MR 0.75 0.88 5.92 2.83 8.88 5.72 
BCC-CSM2-MR 0.76 0.87 6.54 2.96 9.78 5.78 
Can-ESM5 0.72 0.87 7.95 2.98 11.01 5.77 
CMCC-ESM2 0.71 0.87 6.57 2.97 9.28 5.78 
FGOALS-g3 0.70 0.87 8.89 2.95 11.87 5.73 
MIROC6 0.75 0.87 6.21 2.87 9.22 5.73 
MPI-ESM1–2HR 0.74 0.87 5.99 2.87 8.84 5.73 
MPIESM1–2LR 0.75 0.87 7.77 2.87 11.13 5.73 
MRI-ESM2–0 0.74 0.87 5.94 2.96 8.78 5.78 
NorESM2-LM 0.73 0.87 6.17 2.94 9.00 5.78 
NorESM2-MM 0.73 0.86 6.68 2.99 9.60 5.78 
TaiESM1 0.80 0.93 5.78 2.15 9.21 5.16 
MULTI- MODEL MEAN 0.69 0.87 8.63 2.97 11.56 5.78  
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However, variability of maximum temperature is improved for most of the models after bias correction except ACCESS-CM2 and 
MPI-ESM1–2HR show higher variability and deviation (Fig. 6). Also, there is a marginally declining trend of maximum temperature 
over the West Bengal and Uttarakhand states of India with a rate of about 0.005 ◦C per year. The rising surface maximum temperature 
trend over peninsular India is simulated by ACCESS-ESM1–5, AWI-CM1–1MR, CMCC-ESM2, MPI-ESM1–2HR, and MRI-ESM2–0 
models similar to the observations. However, the rising trend over Northeast India is well replicated by ACCESS-CM2, AWI-CM1–1MR, 
CanESM5, and MPI-ESM1–2LR in agreement with observation. However, while CanESM5 is showing an overestimation in the tem-
perature trend over all of the subdivisions, NorESM-LM and NorESM-MM show an underestimation over most of the subdivisions 
making them inferior to other models of the experiment. 

The declining trend over eastern region is over estimated by ACCESS-CM2, MIROC6, and NorESM2-MM, but ACCESS-ESM1–5, 
MPI-ESM1–2HR, MPI-ESM1–2LR and MRI-ESM2–0 perform best over this region. While the observed temperature trends are in 
agreement with the observations reported by Ross et al., 2018 and Rao et al., 2023, similar trends were observed for ACCESS-CM2, 
ACCESS-ESM1–5, MPI-ESM1–2LR and MRI-ESM2–0. simulated maximum temperature by Rao et al., 2023. Multi-Model mean of all 
models shows similar trend as of observed with a slightly lower rate over most of the regions except the Jammu & Kashmir/ Ladakh 
region. However, the CMIP6 models were found to be underestimating the overall magnitude of maximum temperature trend over 
India. Similar observations regarding CMIP6 models were made by Hamed et al., 2022 when compared with the IMD observations. 

Table 3 
Heatwave events (1951–2014) over various meteorological subdivisions of India.  

Meteorological Sub division Observed Multi-Model Mean Range 

Gangetic West Bengal 211 175 113–237 
Odisha 126 153 111–190 
Jharkhand 260 203 168–275 
Bihar 241 164 104–216 
East Uttar Pradesh 335 262 210–374 
West Uttar Pradesh 396 324 280–444 
Haryana Chandigarh & Delhi 367 334 303–400 
Punjab 282 252 230–298 
Rajasthan West 338 331 320–368 
Rajasthan East 350 325 341–379 
East Madhya Pradesh 276 267 292–313 
West Madhya Pradesh 321 279 228–397 
Gujarat 166 163 112–220 
Marathwada 113 147 82–230 
Vidarbha 289 307 215–386 
Chhattisgarh 210 194 119–264 
Coastal Andhra Pradesh 125 136 84–203 
Telangana 184 213 153–270  

Fig. 4. Variation of yearly mean maximum temperature 14 CMIP6 model output against the observation for 1951–2014.  
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3.2. Extreme temperature analysis and evaluation of heatwaves 

For the evaluation of the model ability for simulating extreme temperature over India long term 3 day running 95th and 99th 
percentiles have been calculated for March–April-May-June (MAMJ) months of the whole study period (Fig. 7). Extreme temperature 
values are different for different subdivision of India owing to different geographical features. The highest 95th and 99th percentile 
values using the IMD data have been observed over the central and western regions with values ranging between 42 ◦C to 44 ◦C. These 

Fig. 5. Boxplot showing maximum temperature distribution of CMIP6 model output (a) before bias correction and (b) after bias correction.  

Fig. 6. Spatial trend of daily maximum surface temperature data for the period 1951–2014.  
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regions have been reported to observe higher temperature along with northwestern India by several studies due to consistent rising 
temperature trends in the regions in these recent decades (Ross et al., 2018; Rohini et al., 2019; Goyal et al., 2023). These regions 
occasionally witness temperature as high as 50 ◦C during the pre-monsoon period due to the development of heat low of summer 
monsoon. The northern states of Himanchal and Uttarakhand show lower 95th and 99th percentile values ranging from 30 ◦C to 35 ◦C 
due to higher altitude. However, these regions historically have not been prone to heatwave events (Pai et al., 2013; Mandal et al., 
2019; Singh et al., 2021a, 2021b). 

Simulations of the bias corrected CMIP6 models show good results as all 14 models depict the 95th percentile maximum tem-
perature similar to the reference IMD data for all the subdivision(Fig. 7a). However, models namely ACCESS-CM2, ACCESS-ESM1–5, 
FGOALS-g3 show higher 95th percentile values than IMD over the western Uttar Pradesh and Northern Madhya Pradesh region. 
Similarly, the 99th percentile values representing the extreme threshold have also been simulated by the CMIP6 models which also 
agree with the observation IMD (Fig. 7b). Over the Central, Northern, and Western regions higher maximum surface temperatures for 
the 99th percentile have been very well estimated. The multi-model mean percentiles were found to be closest to the observed data. 

Heatwave events were calculated using the IITM criteria which utilizes long term 3 day running 95th percentile temperature values 
to evaluate extreme temperature events (Fig. 8a). Heatwave days in this method are declared on the basis if the temperature exceeds 
95th percentile of daily temperature for each grid where the daily temperature must be higher than 36 ◦C and departure from mean 
should be >3.5 ◦C, also heatwave is declared if temperature exceeds 44 ◦C irrespective of probability of exceedance (Mandal et al., 
2019). Observed data shows most frequent heatwave events over the western Uttar Pradesh, Madhya Pradesh, northern parts of 
Rajasthan and Delhi ranging between a total of 500 to 550 days for the MAMJ season of the study period (1951–2014). However, 
Central, Northern, Northwestern and Central eastern regions witness around 300 heatwave days during the 64 years of the study 
period. Eastern Maharashtra, Chhattisgarh, and Telangana region have also been found to be heatwave prone with >300 heatwave 
events. Shukla and Attada, 2023 while analyzing the thermal discomfort over the Indian region also found that the northwestern and 
central cities are prone to higher thermal discomfort as compared to other cities of the country. While the spatial distribution of heat 
wave occurrence may be similar to the observations, models differ in simulating the magnitude or frequency of heat wave days over 
India. ACCESS-CM2, CanESM5, and NorESM2-MM overestimates the number of heatwaves over Northwestern region constituting of 
East and West Rajasthan meteorological subdivisions. MPI-ESM, NorESM2, and FGOALs-g3 have been found to simulate approxi-
mately equal number of heatwave days over similar regions. The increasing and decreasing trend by the observation and CMIP6 
models are also reported by recent studies by Rao et al., 2023; Goyal et al., 2023. 

Decadal average of heatwave events has been calculated to measure the decadal frequency of extreme temperatures over various 
regions (Fig. 8b). With an average of >50 heatwave occurrences every decade, western Uttar Pradesh and parts of northwestern 
Madhya Pradesh followed by the northwestern and northern regions with 30 days/decade, these regions have been identified to be as 
the most frequently observed heatwave regions. Similar results have been reported by Singh et al., 2021a and Singh et al., 2021b. Also, 
it is interesting to note that the eastern Maharashtra region also observes >30 heatwave occurrences over a decade. New heatwave 
hotspots have been developing over the peninsular India in the recent decades (Singh et al., 2021a, 2021b). The multi-model mean and 
range of estimated mean of total heatwave events over various Indian meteorological subdivisions of India for MAMJ during 
1951–2014 have been estimated (Table 3). The results show that the number of heat wave days over meteorological subdivisions 
within the eastern and central-eastern region i.e., West Rajasthan (331) and East Rajasthan (325), West Uttar Pradesh (324), East Uttar 
Pradesh (262), West Madhya Pradesh (279), East Madhya Pradesh (267), Telangana (213), Vidarbha (307), Chhattisgarh (194) 
Jharkhand (203), Odisha (153), were highest. Higher number of heat waves in the coastal region of the country pose a severe health 
risk to the inhabitants (Singh et al., 2021a, 2021b). As the model simulations over the regions showing similar occurrence of heat 
waves indicates towards the added value in the latest CMIP6 models which despite being global climate models are able to capture the 
topography and coastal characteristics intrinsic to the regions. 6 of the 14 CMIP6 model simulations i.e., AWI-CM1–1MR, CanESM5, 
FGOALS-g3, MPI-ESM1–2HR, NorESM2-LM and NorESM2-MM replicates the observed relatively well in the heatwave frequency 
whereas the ACCESS-ESM1–5 underestimates and ACCESS-CM2 model overestimates the most. 

3.3. Trend analysis 

Mann-Kendall trend test at 5% significance level was applied to evaluate the heatwaves trend simulated by the models against 
observed over India and different subdivisions for MAMJ (1951–2014). According to the observed trend, heatwave frequency has 
increased over northwestern, central, central-eastern regions of India (Fig. 8). However, the eastern region including Gangetic West 
Bengal, Bihar, Jharkhand subdivisions with an overall decreasing trend. Singh et al., 2021a, 2021b., found similar results for the region 
in both frequency and trend where the seasonal average heat wave events were higher in the Gangetic West Bengal due to higher 
frequency in the early decades of 1950s, 1960s which decreased gradually in the recent decades causing a declining trend. Similar 
trends have been observed in the decrease of maximum temperature but the rate of HW frequency decrease is higher over West Bengal 
region compared to Uttarakhand (Fig. 8). ACCESS-CM2 and CanESM5 models overestimated the trend over the northwestern, central 
and south-central region showing significantly increasing trend over these regions whereas the rising trend in the northwestern parts 
were reasonably simulated by ACCESS-ESM1–5, MPI-ESM1–2HR, MPI-ESM1–2LR, NorESM2-MM and TaiESM1. While the decreasing 
trend over the Gangetic West Bengal was found to be simulated by the MIROC6, MPI-ESM1–2HR, MPI-ESM1–2LR and MRI-ESM2–0, it 
was also observed that these models simulated negative trends over most of the regions of the country. TaiESM1 and the multi-model 
mean simulated the heat wave days similar to the observation in both spatial distribution and temporal frequency as well as the 
declining trend in the eastern region. Overall, the trend analysis found that ACCESS-ESM1–5, TaiESM1 and the multi-model were best 
among all the 14 CMIP6 models for India and can be used reliably for future projections. 
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Fig. 7. Spatial distribution of extreme temperature distribution by CMIP6 bias corrected model output for the period 1951–2014 (a) 95th percentile 
(b) 99th Percentile. 

Fig. 8. Heatwave events over India calculated by IITM criteria. (a). Cumulative heatwave events during the period 1951–2014. (b) Decadal average 
of Heatwave events. 
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4. Conclusion 

India has become a hotspot for heat wave rise and its severe impact on human health, agriculture and economy. The present study 
assessing the recent CMIP6 model performance for heat wave simulation over India found that the bias corrected CMIP6 GCMs show 
consistency in the simulation of temperature and extremes temperature over India and its subdivision. Although, annual variations of 
bias corrected model results show improvement, but performances of different models are found better in different regions. ACCESS- 
ESM1–5, MPI-ESM1–2HR, and MRI-ESM2–0 have been found to be the best models in temperature simulations over different regions 
of India. Furthermore, extreme temperature analysis shows highest values of 95th and 99th percentiles over the Central, Northern and 
Central-western regions. Further, heat wave analysis revealed that the eastern and central and south-central meteorological sub-
divisions, e.g., Odisha, Jharkhand, Gangetic west Bengal, Bihar, Telangana, Vidarbha and Chhattisgarh recorded highest number of 
heatwave events. There is an increase in heatwave trend over northwestern and central eastern parts of India and a decrease over the 
Gangetic west Bengal region. These trends were very well replicated by ACCESS-ESM1–5, MPI-ESM1–2HR, MPI-ESM1–2LR, MRI- 
ESM2–0, NorESM2-MM and TaiESM1. This study concludes that bias corrected CMIP6 models are efficient in simulating the maximum 
temperature, extreme temperature and heatwave events over India. Although, all models were found competent, ACCESS-ESM1–5, 
MPI-ESM1–2HR and MRI-ESM2–0 models were best out of 14 CMIP6 models. As the CMIP6 models pave way for improved under-
standing and simulation of extreme temperature events for the future modeling studies, the present study will help to better understand 
the performance of CMIP6 based model outputs in simulation of heat waves over India. The findings of the study will aid in ascer-
taining the uncertainties associated with uncorrected model performances and help in reducing in future experiments as well as 
making reliable future projections of extreme temperature and heat waves over India. 
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