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Abstract

Global and regional trends of the Aerosol Optical Depth (AOD) from Coupled

Model Intercomparison Project (CMIP) Phase 6 simulations for the study

period 1971–2014 were compared against the satellite retrievals and the inter-

model variations were analysed. The AOD from multimodel mean (MMM) of

eight general circulation models (GCMs) has been evaluated against the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imag-

ing Spectro Radiometer (MISR) AOD for the 2001–2014 period. Angstrom

exponents (AE and its first derivative) that represent the size distribution of

aerosols are estimated globally from the perturbed initial condition ensemble

of MRI-ESM2-0 and MPI-ESM-1-2-HAM models to report the aerosol varia-

tions through their size distribution. We found that the global AOD obtained

from the MMM8 showed an insignificant decreasing trend, while this trend is

significantly positive over the northern tropical region. The MMM8 has overes-

timated the MODIS AOD over North Africa, India, China, and Australia while

this overestimation is confined to North Africa and eastern China when com-

pared against MISR AOD. The absolute percent bias of MMM8 is 28.1% and

24.1% over the globe when compared against MODIS and MISR AOD,

respectively. The spatial pattern of AE showed the dominance of fine- and

coarse-mode particles during the boreal/austral winter and summer seasons,

respectively, that replicate the seasonality of aerosols. The AE derived from

MPI-ESM-1-2-HR demonstrated better agreement with AATSR SU's

(Advanced Along Track Scanning Radiometer instrument series, with the algo-

rithm developed by Swansea University) AE (550–870 nm). On the other hand,

MRI-ESM2-0 consistently underestimated AE across different regions and

wavelength ranges, suggesting an over representation of larger aerosol

particles in the model's portrayal of aerosol size distribution compared to

satellite observations.
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1 | INTRODUCTION

Atmospheric aerosols (AA), one of the important
climate-forcing agents, imply a significant impact on the
changing climate. AA perturb the atmosphere directly by
the extinction of incoming solar radiation (Andreae
et al., 2005; Jung et al., 2019) and indirectly by altering the
cloud properties (Christensen et al., 2020; Ramanathan
et al., 2001). Besides, AA can influence human health by
causing respiratory and cardiovascular diseases depending
on their size, type, and composition (Lelieveld et al., 2013).
The increasing (decreasing) trend of aerosol emissions in
the atmosphere causes a decline (increase) in the solar radi-
ation received at the surface, which is termed as the dim-
ming (brightening) effect (Wild et al., 2005). Since the late
1980s, the increasing trend of AA has been reversed to a
decreasing trend over the Northern Hemisphere, causing an
increment in incoming shortwave solar radiation at the
Earth's surface (Quaas et al., 2022; Wild, 2010; Wild
et al., 2005). This dimming-to-brightening effect can poten-
tially strengthen the warming trend caused due to green-
house gases and significantly influence the earth's
hydrological cycle.

As a result of air pollution reduction policies executed
in several regions such as Europe and Northern America
from the 1970s, anthropogenic aerosol emissions have
decreased (Wild, 2010). In contrast, air pollution due to the
utilization and use of fossil fuels has expanded unequivo-
cally in other regions. Particularly, Southeast Asia and
Africa have had a general increment in AA since the mid-
1970s (Klimont et al., 2013; Smith & Bond, 2014; Stohl
et al., 2015). In contrast, Europe and Northern America
showed a decrement in aerosol loading since the mid-1980s
(Wild et al., 2005). From the satellite observations, it is evi-
dent that the spatiotemporal distribution of AA over Asia
has changed (Myhre et al., 2013; Ramachandran
et al., 2020) mainly due to the increase in the anthropo-
genic emissions of aerosols and their precursors
(Ramachandran et al., 2020; Samset et al., 2019).

Hence, it is important to have a precise representation
of the long-term global and regional aerosol burden for a
better understanding of their role in the climate. General
circulation models (GCMs) simulate and provide the AA
concentration in the atmospheric column by considering
both natural and anthropogenic sources. The ability of
GCMs to accurately simulate the atmosphere in the histori-
cal period is a matter of great concern to rely upon future
projections. In the present work, we focused on the histori-
cal simulations of aerosol optical depth (AOD), a measure
of radiation extinction, used as a proxy for aerosol concen-
tration from GCMs' simulations. New generation models
such as ECHAM6-HAM2, EMEP/MSC-W, GISS, Nor-
ESM1, OsloCTM2, and SPRINTARS which participated in

the European Union project ECLIPSE, used identical and
improved anthropogenic emission data for the 1990–2015
period from ECLIPSE to simulate the AOD (Klimont et al.,
2017; Stohl et al., 2015). Myhre et al. (2017) studied the
multimodel mean of the above-said models and reported
that the models have reproduced the large-scale changes in
surface aerosol over the United States and Europe.

Coupled Model Intercomparison Project (CMIP) is
the result of a coordinated effort of climate modellers
across the globe that provided distinct and updated simu-
lated datasets of new-generation GCMs. The CMIP6
models use biogeochemical processes of aerosols repre-
sented in earth system models for the simulation of cli-
mate and atmosphere. The future projection pathways of
CMIP6 are known as shared socioeconomic pathways
(SSPs). Unlike the representative concentration
pathways (RCP) of the CMIP5, the 6th phase SSPs incor-
porated additional attributes such as land, energy use,
and economic activities along with the impact of emis-
sions for respective scenarios (Eyring et al., 2016). Aero-
sol optical depth from CMIP GCMs had been used to
understand the relationship of AA with the global water
cycle (Boé, 2016; Lin et al., 2018; Monerie et al., 2022;
Sanap et al., 2015; Sobel et al., 2019), their influence on
clouds (Cherian & Johannes, 2020; Frey et al., 2017; Hua
et al., 2020; Luo et al., 2021) and Asian aerosol dipole pat-
terns (Ramachandran et al., 2022; Wang et al., 2021). Spa-
tiotemporal variations of AA in CMIP5 and CMIP6
models in eastern central China report an underestima-
tion of AOD that decreased from 40% (CMIP5) to 8%
(CMIP6) in comparison with satellite AOD during 2000–
2005 (Ali et al., 2022; Li et al., 2021).

It was also reported that the CMIP phase 5 models
have not precisely depicted the fundamental cloud pro-
cesses (Lauer & Hamilton, 2013) and due to this, the
CMIP5 model's simulated aerosol-cloud interactions are
not reliable, causing errors in the radiative forcing values.
Furthermore, Sanap et al. (2014) reported an anomalous
easterly wind bias in most of the CMIP5 models resulting
in a disagreement in simulated dust aerosols when com-
pared against the satellite retrievals for the 2001–2005
period over the South Asian region. The updated CMIP6
GCMs with more exhaustive aerosol–cloud interactions
simulate the general circulation features in a better way
(Chung & Soden, 2017; Ekman, 2014). So, it is exception-
ally intriguing to see how these new-generation models
simulate the latitudinal trends and spatiotemporal size
distribution of aerosols globally. With the increasing
number of GCMs' simulations of AOD, a clear picture of
the evaluation of AOD datasets are of prime importance.
Cherian and Johannes (2020) carried out the spatial trend
analysis of AOD and cloud parameters from seven
CMIP5 and five CMIP6 models (CanESM5, GFDL-CM4,
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IPSL-CM6A-LR, HadGEM3-GC31-L and MIROC-ES2L)
simulations in aerosol source regions to understand the
link between emission trends and cloud radiative effects
and the results were compared with the MODIS
retrievals. Mortier et al. (2020) conducted a comparative
analysis of aerosol products from AeroCom Phase III
models and four CMIP6 models (NorESM2, CanESM5,
CESM2, IPSL-CM6A) against ground observations from
AERONET.

The present work performs the analysis based on the
eight CMIP6 simulations that have been selected from

26 available CMIP6 models by applying the statistical
performance metrics. Further, we have used the ensem-
ble of eight models' AOD (Table 1), which are different
from the previous studies, to compare against the AOD of
MODIS and MISR on a global scale. In the second part
of the work the AE derived from the models have been
compared against the same obtained from the MODIS
and AATSR SU. The results of the present study will fulfil
the gap of the earlier studies by discussing the model
AOD and AE variations globally with reference to multi-
ple satellite retrievals.

TABLE 1 List of CMIP6 models along with resolution and data availability used in this study (https://esgf-node.llnl.gov/search/cmip6/)

Model Modelling centre
Model
resolution

AOD availability (λ)

550 nm 440 nm 870 nm

ACCESS-CM2 CSIRO, Australian Research Council Centre of
Excellence for Climate System Science (ACCESS),
Australia

1.875� × 1.25� ✔ ✔ ✘

AWI-ESM-1-1-LR Alfred Wegener Institute (AWI), Germany 1.875� × 1.875� ✔ ✘ ✘

BCC-ESM1 BCC, China 2.813� × 2.813� ✔ ✘ ✘

CESM2 NCAR, USA 1.25� × 0.93� ✔ ✘ ✘

CESM2-FV2 NCAR, USA 2.5� × 1.875� ✔ ✘ ✘

CESM2-WACCM NCAR, USA 1.25� × 0.938� ✔ ✘ ✘

CESM2-WACCM-
FV2

NCAR, USA 2.5� × 1.875� ✔ ✘ ✘

CMCC-CM2-SR5 CMCC, Italy 1.25� × 0.938� ✔ ✘ ✘

CMCC-ESM2 CMCC, Italy 1� × 1� ✔ ✘ ✘

E3SM-1-0 E3SM-Project, LLNL 1� × 1� ✔ ✘ ✘

E3SM-1-1 E3SM-Project, RUBISCO 1� × 1� ✔ ✘ ✘

E3SM-1-1-ECA E3SM-Project 1� × 1� ✔ ✘ ✘

GFDL-CM4 NOAA GFDL, USA 1.25� × 1� ✔ ✘ ✘

GFDL-ESM4 NOAA GFDL, USA 1.25� × 1� ✔ ✔ ✔

INM-CM4-8 INM, Russia 2� × 1.5� ✔ ✘ ✘

INM-CM5-0 INM, Russia 2� × 1.5� ✔ ✘ ✘

IPSL-CM6A-LR IPSL, France 2.5� × 1.259� ✔ ✔ ✔

IPSL-CM6A-LR-
INCA

IPSL, France 2.5� × 1.259� ✔ ✔ ✔

KACE-1-0-G National Institute of Meteorological Sciences/Korea
Meteorological Administration (NIMS-KMA),
Republic of Korea

1.875� × 1.875� ✔ ✘ ✘

MIROC6 MIROC, Japan 1.405� × 1.406� ✔ ✘ ✔

MPI-ESM-1-2-HAM HAMMOZ-Consortium 1.875� × 1.875� ✔ ✔ ✔

MPI-ESM1-2-HR MPI-M, DWD, DKRZ 0.938� × 0.937� ✔ ✘ ✘

MPI-ESM-1-2-LR MPI-M, AWI 1.875� × 1.875� ✔ ✘ ✘

MRI-ESM2-0 MRI, Japan 1.125� × 1.125� ✔ ✔ ✔

NorESM2-LM NCC, Norway 2.5� × 1.875� ✔ ✘ ✘

NorESM2-MM NCC, Norway 1.25� × 0.938� ✔ ✔ ✔
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The main objectives of the present work are as
follows:

1. To analyse the spatiotemporal variations of AOD sim-
ulations from individual GCMs and their multimodel
mean (MMM) over different latitudinal belts and aero-
sol source regions of the globe for the period of
1971–2014.

2. Comparison of the simulated AOD of MMM with the
satellite (MODIS and MISR) derived AOD for
the period 2001–2014 to report the biases in the
model AOD.

3. To obtain the Angstrom exponents (AE), using two
and three wavelength dependence AODs, for under-
standing the aerosols' size distribution over the globe
for the period 1971 to 2014, and comparison with the
AE calculated from the satellite retrievals (MODIS
and AATSR SU).

2 | DATA AND METHODOLOGY

Historical simulations of monthly mean AOD from
the 26 GCMs of the CMIP6 (Eyring et al., 2016) for
the period of 1971–2014 have been utilized in this
study. Details of the models used in this study are
listed in Table 1. The analysis is carried out by using
the simulated datasets under the variant label
“r1i1p1f1” and “historical” experiment which is forced
by the observation-based external forcings (Eyring
et al., 2016). The datasets can be accessed from
https://esgf-node.llnl.gov/.

The AOD retrievals from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and Multi-angle Imaging
SpectroRadiometer (MISR) from the Goddard Earth Sci-
ences Data and Information Services Center (GES DISC,
NASA) have been used in the present work. The avail-
ability of the MODIS and MISR AOD are from February
2000 and March 2000 onwards, respectively. The level
3 monthly data of AOD at mid-visible wavelength
(550 nm) retrievals of MODIS (combined Terra and
Aqua) from the merged product from the Dark Target
and Deep Blue combined algorithm were used in the pre-
sent work. The accuracy of MODIS AOD is expected to
be within the ± [0.05 + (0.15 × AOD)] error envelope
(Kaufman et al., 1997; Levy et al., 2013). The MISR mea-
sures the atmospheric and surface properties using multi-
ple viewing angles. The level 3 AOD at 555 nm data in a
grid of 0.5� × 0.5� resolution was used considering that
the small difference in the reference wavelength does not
introduce considerable errors. This approximation is con-
sidered in multiple previous studies (Deep et al., 2021;
Kang et al., 2016; Zhao et al., 2018). The MISR AOD can

have uncertainties up to ±0.20 × AOD (Kahn et al., 2001;
Kahn et al., 2010).

Reanalysis data sets of wind at 850 hPa have been
obtained from the National Centre for Environmental
Prediction (NCEP) with 2.5� × 2.5� resolution for the
period 1971–2014. The data is available on a monthly
scale and can be obtained from https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis.html. The wind data at
850 hPa is found to be the better indicator of weather pat-
terns over large areas (Neal et al., 2020) and the altitude
equivalent to 850 hPa is sufficiently distant from the sur-
face topography and represents the well-mixed atmo-
sphere. All the datasets were brought into a common
resolution of 1� × 1� by using the bilinear interpolation
method since the individual model and satellite data have
various space-scale resolutions.

Our aim in the present work is to study the model
AOD trends and the models' ability in simulating the refer-
ence AOD, that is, MODIS and MISR. An MMM is to be
obtained from the individual models which minimizes the
uncertainties. However, the selection of models for obtain-
ing the MMM is very much required since all the models
do not have agreement either with the magnitude or with
the pattern as reference AOD datasets show. In the present
study, the selection of models has been done by examining
each model's performance against the combined satellite
(MODIS and MISR) mean annual AOD data for the
2001–2014 period. Since the satellite AOD data is available
from the year 2000 onwards for MODIS and MISR which
is shorter compared to the modelled data period, we have
also evaluated the individual models against the MMM of
all 26 GCMs (MMM26) for the 1971–2014 period (Misra
et al., 2016; Pu & Ginoux, 2018).

The Taylor diagram (Figure 1a,b) shows the correla-
tions of AODs obtained from each GCMs, averaged over
the globe with the reference mean annual AOD data along
with the normalized standard deviations. From Figure 1, it
is possible to decipher the extent of agreement of individual
models with the reference data, from these eight models,
namely AWI-ESM-1-1-LR, BCC-ESM-1, CESM2-WACCM,
CESM2-WACCM-FV2, MPI-ESM-1-2-HR, MPI-ESM-
1-2-HAM, MPI-ESM-1-2-LR and MRI-ESM2-0, which have
the significant correlation of 0.9+ with MMM26 for the
period 1971–2014 (Figure 1a) and the same all models have
a correlation of +0.6 and above (expect MRI-ESM-0 which
have r = +0.51) with satellite data (Figure 1b). From these
eight models, MMM8 was obtained and proceeded in the
study. The normalized standard deviation of MMM8 is high
(�3.18) when compared with MMM26, which might be
due to the reason that the variability amplitude of MMM26
has been washed out by the inclusion of many models with
lower AOD. Also, the MMM8 has the highest correlation
(r = 0.7) and a normalized standard deviation of 0.78 with
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the satellite data. Please note that we have used the MMM
of the GCMs with similar climate initial conditions, that is,
with the single realizations, in the present study and this
MMM approach itself is a way of minimizing the internal
uncertainty or bias compared to other individual models
(Hawkins & Sutton, 2009). The use of MMM will help us to
evaluate how well the climate system is simulated by the
GCMs (Tebaldi and Knutti, 2007).

We have also verified the spatiotemporal pattern of
the mean annual AOD of individual 26 GCMs, MMM8,

MMM26, and satellite retrievals (MODIS and MISR) for
the 2001–2014 period (Figures S1 and S2a–o, Supporting
Information). From the figures, it is observed that the
models such as INM-CM5-0 and INM-CM4-8 could not
capture the tropical mean AOD when compared with
MODIS and MISR AOD features. The models such as
MIROC6, CMCC-ESM2, and CMCC-CM2-SR5 could not
show the spatial pattern of mean AOD across the globe
as shown by the satellites. The inclusion of these models
in obtaining the MMM affects the spatiotemporal

FIGURE 1 Taylor diagrams showing the correlation coefficients and normalized standard deviation of mean annual AOD for individual

26 GCMs and MMM against the reference AOD (a) MMM of 26 GCMs (MMM26) and (b) combined satellite AOD (MODIS and MISR)
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compatibility of the model simulated AOD with the satel-
lite datasets. Hence, the method followed in the present
study to obtain the MMM of eight selected models is a
better choice since its large-scale features of AOD are
comparable with the reference datasets.

The latitudinal trends of AOD for the period
1971–2014 were calculated for individual eight CMIP6
GCMs that have been used for MMM8. The trend analy-
sis was carried out using the least square linear trend
method for the Globe, Northern and Southern Hemi-
spheres, Tropics, middle latitudes and polar regions of
both hemispheres. The following abbreviations are used
to represent the regions (the latitudinal ranges have been
provided in the parenthesis): NP, northern polar region
(61�–90�N); NM, northern midlatitude region
(31�–60�N); NT, northern tropical region (0�–30�N); ST,
southern tropical region (0�–30�S); SM, southern
midlatitude region (31�–60�S); SP, southern polar region
(61�–90�S); NH, Northern Hemisphere (0�S–90�N); SH,
Southern Hemisphere (0�N–90�S). This regression
method used in the present work for the trend analysis is
a straightforward and robust technique that is widely
adopted to assess the time-dependent geological and eco-
logical variables trends and it is less sensitive to the dis-
continuance in the time series of data. The method is
very suitable for data having constant uncertainty, that
is, Gaussian white noise (Ramachandran et al., 2020).
The two-tailed Student t -test was applied to compute the
statistical significance of the latitudinal trend. In the pre-
sent study, the trend analysis has been carried out for the
period 1971–2014 by taking the mean annual AOD on
the Y-axis and the years on the X-axis. The slope of the
linear fit between any two points on the fit trend line is
considered as the trend value. The trend analysis has
been carried out separately for the land, ocean, and com-
bined regions (land–ocean together).

We analysed the mean AOD from CMIP6 GCMs with
MODIS and MISR satellite data by estimating the percent
bias for the period 2001–2014. The percent bias has been
obtained by taking the percentage ratio of the difference in
mean annual AOD between the model and satellite to the
satellite AOD, and the average percent bias of the spatial
pattern of AOD for the study period. Since the sign of bias
can change its magnitude when averaged over a large area,
we have also calculated the absolute bias of MMM8 with
MODIS and MISR AOD for the different latitudinal belts as
well as for the regions of United States, Europe, India, and
China where the significant trends of aerosols took place.
As the MODIS data is available from 2001 onwards for all
months, we could use model data from 2001 to 2014 for
comparison purposes. Though MODIS and MISR give
updated AOD data for the current year also, the historical
simulations of CMIP6 end by 2014.

The Angstrom exponent (AE) and its first derivative
were calculated from the AOD simulation datasets for the
period 1971–2014. The AE and its first derivative provide
information on the size distribution of aerosols. The AE (α)
can be calculated using the wavelength dependence AODs
(τ) at a minimum of two different wavelengths (λ1, λ2).
For obtaining the AE, the combination of AOD at
440 and 550, 550 and 870, and 440 and 870 nm were used
from the perturbed initial condition ensemble for two
models, MRI-ESM2-0 and MPI-ESM-1-2-HAM. It should
be noted that the other models that were used for MMM8
do not have AOD at 440 and 870 nm wavelengths. Hence,
we have used the aforementioned models only, to esti-
mate the AE and its first derivative. We have adopted the
perturbed initial condition ensemble approach when esti-
mating the AE from these two individual GCMs. Based
on the availability, we have used ten realizations for
MRI-ESM2-0 and three realizations for MPI-ESM-
1-0-HAM in the present study to estimate the spatial pat-
tern of AOD.

The first derivative of AE was obtained using the AODs
at 440, 550, and 870 nm from the above-mentioned models.
The formulae for calculating the AE (Equation (1)) and
the derivative of AE (Equation (2)) (Eck et al., 2001;
Knobelspiesse et al., 2004) are presented below,

α=−
d lnτ
d lnλ

=−
ln τ1

τ2

� �

ln λ1
λ2

� � , ð1Þ

α0 λið Þ= dα
d ln λ

=−
2

ln λi+1− ln λi−1

� �
:

ln τi+1− ln τi
ln λi+1− ln λi

−
ln τi− ln τi−1

ln λi− ln λi−1

� �
:

ð2Þ

The analysis of spatial variations of AE and its first
derivative provides inferences on the dominance of fine-
and coarse-mode particles across different regions. The
AE was studied for the January and July months, which
represent the winter and summer season months in the
Northern Hemisphere and vice versa in the Southern
Hemisphere. Additionally, in the regional aspect of the
tropical monsoon regions, January/July are non-mon-
soon/monsoon months of the year. This allows a clear
distinction of seasonality in aerosols in which their size
matters predominantly.

To verify the Angstrom exponent (AE) acquired
through the perturbed parameter ensembles (PPE) of both
models, we employed data from MODIS and AATSR SU
v4.3 (Advanced Along Track Scanning Radiometer instru-
ment series, with the algorithm developed by Swansea Uni-
versity). MODIS provides AOD values across three spectral
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bands (470, 550, and 660 nm) over land. To enable a mean-
ingful comparison with the model's AOD (440 nm), we
standardized the MODIS AOD at 470 nm by interpolating
it to a 440 nm wavelength using a wavelength-dependent
AOD-to-AE relation as in Equation (1), a similar interpola-
tion method has been used in many recent studies (Mukka-
villi et al., 2019; Qi et al., 2013). Specifically, we used the

AE values within the 410–470 nm range from MODIS for
this purpose. Following the interpolation, the AOD at 440–
550 nm was employed to calculate AE using the same
equation. It is worth noting that this study utilized level
3 output data, provided at both daily and monthly resolu-
tions, with a 1� × 1� spatial resolution, designed for climate
model comparisons. In the case of AATSR SU, the AOD

FIGURE 2 Heat maps of mean annual AOD at 550 nm (a–c) and the trend values of mean annual AOD at 550 nm (d–f) for the period
of 1971–2014 were obtained from the eight selected individual models along with MMM8 for land (a, d), ocean (b, e) and combined regions

(c, f) over tropical, mid-latitudinal and polar regions of Southern and Northern Hemispheres, Southern and Northern Hemispheres as the

whole and the entire globe. Single dots in the boxes denote the statistical significance of the trend at 0.01 level, double dot denotes the same

but at 0.05 level
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data corresponding to the common wavelength spectra of
550 and 870 nm for the 2002–2012 period is available. Con-
sequently, we utilized these wavelengths to compute
AE. However, the studies on the evaluation of AOD using
AATSR SU are very few, and evaluation studies on AATSR
SU against ground-based reference data are limited, accord-
ingly, the AOD of MODIS and MISR were only utilized for
the selection of models to obtain the MMM in this study.

3 | RESULTS AND DISCUSSION

3.1 | Spatiotemporal variations of AOD
simulations and their trends

The mean annual AOD for the global and latitudinal
bands along with the trends over the land, ocean, and the
combined regions are depicted in Figure 2a–c,d–f for
the study period 1971–2014. The dots in different boxes
of Figure 2d–f denote the statistical significance of AOD
trends in those respective latitudinal bands. Single and
double dots represent the 0.01 and 0.05 levels of signifi-
cance, respectively. To enable a meaningful comparison
of these values with satellite retrievals, we present the
mean and trend values of the models' Aerosol Optical
Depth (AOD) for the period spanning from 2001 to 2014,
along with MISR and MODIS AOD, in Figure S3. Given
the relatively shorter study period when satellite observa-
tions are included, the trend values and levels of statisti-
cal significance vary between Figures 2 and S3. Among
the eight GCMs, CESM-WACCM-FV2 showed the high-
est value of AOD over the NT over the land (>0.7), ocean
(>0.25), and combined region (>0.3) during the study
period when compared to the other GCMs (Figure 2a–c).
As reported by Zhao et al. (2022), this high value of AOD
over the NT is due to the higher values of dust aerosols
simulated by the model CESM-WACCM-FV2 over the
desert regions of Northern Africa and the Middle East
which was also pronounced in our analysis (Figure S1k).
Similarly, the lower values of AOD are shown by the
same model CESM-WACCM-FV2 over land (�0.005),
ocean (�0.02), and combined regions (�0.01) of the SP
region (Figure 2a–c). From the visual inspection, it can
be observed that the mean AOD variability is high over
the land compared to the ocean and combined regions,
which is evidenced by the standard deviations of �0.03,
0.02, and 0.025, respectively. All the models along with
the MMM8 showed higher values in the Northern Hemi-
sphere tropical region. AWI-ESM-1-1-LR, BCC-ESM-1-2,
MPI-ESM-1-2-HAM, MPI-ESM-1-2-HR, MPI-ESM-1-2-
LR, and MRI-ESM-2-0 models have shown significant
negative trends over NM, NP over the land, ocean, and
combined regions. During the 2001–2014 period, all the

models kept a similar mean AOD and trend pattern with
minor changes in the magnitude, when compared these
satellite AOD MODIS depicts a significant positive trend
in the NT similar to the models, whereas MISR also
shows a positive trend in NT in land and combined
regions but the values were statistically insignificant
(Figure S3). While in the NM regions, the MODIS and
MISR showed an insignificant increasing trend of AOD,
on the other hand, MISR and models showed a decreas-
ing trend pattern. This dissimilarity between models and
satellite products is discussed further while discussing
the model biases in the next subsection. CESM2-WACCM
model showed positive significant trends over ST, SH in
the land region and ST in the oceanic and combined
regions (Figure 2). The model MRI-ESM-2-0 showed neg-
ative trends in NM, NP in oceanic regions and NH in the
combined regions while the model CESM2-WACCM
showed a significant positive trend over ST in the land
region. The mixed trends of AOD in all these models
infer the intermodel variability and discrepancy among
the models. As illustrated in Figures 3a, S1, and S2, the
mean AOD value in the Southern Hemisphere
(ST) appears lower when contrasted with the Northern
Hemispheric regions. While the majority of the models
exhibit an insignificant trend in the ST region, both the
models and satellite data from CESM2-WACCM and
CESM2-WACCM-FV2 reveal a significant positive trend.
This arises from the fact that the model has a tendency to
overestimate the presence of dust aerosols and simulate a
more pronounced southward transport of these dust
particles in comparison to observational data (Zhao
et al., 2022). The MMM8 showed significant decreasing
trends over the Northern Hemispheric belts whereas
these trends are insignificant without trend in the South-
ern Hemispheric regions (Figure 2d–f).

While taking the hemispheric mean values, the
regional features mainly from aerosol source regions can
be missed out. So, the mean AOD and its trend over the
aerosol source regions, for the regions India, eastern China,
Europe, Africa and Middle-East, North-East America, and
South America are given in Figure S4, and these regions
were similar to the regions considered by Subba et al.
(2020). All the models along with MMM and satellite data
show a significant decreasing trend in North-East America
and Europe (other than CESM2-WACCM and CESM2-
WACCM-FV2); high mean AOD and a significant increas-
ing trend depicted in India (other than CESM2-WACCM-
FV2) and the eastern China region (other than CESM2-
WACCM-FV2 and MISR); while considering the South
America region, most of the models and MMM depicted
insignificant trend and the satellite showed an insignificant
decreasing pattern. In Africa and Middle-East region,
CESM2-WACCM-FV2 showed high mean AOD values
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(�0.7); while the AWI-ESM-1-1-LR, BCC-ESM-1-2, MPI-
ESM-1-2-HR, MPI-ESM-1-2-LR and both the MMM
showed significant positive trend and the satellite data also
showed insignificant positive trend. The models AWI-ESM-
1-1-LR, BCC-ESM-1-2, MPI-ESM-1-2-HR, and MPI-ESM-1-
2-LR utilize prescribed aerosol schemes rather than
incorporating interactive aerosol components. This
results in some similarities between these models, irre-
spective of the higher or lower resolution of the models
(Figures S1 and S2). In contrast, models such as
CESM2-WACCM (MASINGAR mk2r4), CESM2-WACCM-
FV2 (MASINGAR mk2r4), MPI-ESM-1-2-HAM (HAM2.0),
and MRI-ESM-2-0 (MAM4) feature their unique interactive
aerosol components, as indicated in Table 1 references.

These components contribute to the generation of dis-
tinct aerosol patterns based on their respective features
(Figures S1 and S2). While all these models may share
similar emission inputs for aerosols and aerosol precur-
sors, their diverse aerosol loadings in the atmosphere
lead to the observed distinctions among them.

The decreasing trends in AOD as shown in Figure 2
were also detected in CMIP5 under representative con-
centration pathway (RCP4.5) future scenarios, which
were reported to be due to the increased control of emis-
sions (Rotstayn et al., 2013). The trends of AOD obtained
from CMIP5, CMIP6, satellites, and reanalysis datasets
showed that the multimodel ensembles were able to
match the values obtained from satellites, but the

FIGURE 3 Spatial pattern of (a)

Climatological mean annual AOD, (b)

trend of annual AOD (in per decade

scale) at 550 nm for the period 1971–
2014 obtained from the MMM8. Here

the hatched portion in (b) represents

the statistical significance at a 0.05 level
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individual models could not (Vogel et al., 2022). For
obtaining the MMM, Vogel et al. (2022) used the AOD
data from 21 CMIP6 GCMs over the region of 60�S–60�N
and found that the average value of AOD is 0.16 for the
period 1998–2014. In the present study, we have consid-
ered the six models (AWI–ESM-1-1-LR, BCC–ESM1,
CESM2–WACCM, MRI-ESM 2-0, CESM–FV2 and MPI–
ESM–HAM) among the 21 models chosen by Vogel et al.
(2022) and the average AOD obtained from these six
models for the region of 60�S–60�N are approximately 0.2
(land), 0.14 (ocean) and 0.16 (combined) for the period
1998–2014. It is also reported that uncertainties and dif-
ferences among the models in simulating the AOD are
mainly due to the uncertainties in the emission data sets
(Vogel et al., 2022). It is reported that the mean AOD is
higher in the Northern Hemisphere compared to the
Southern Hemisphere and in the NH, the region covered
between the equator and 40� tropical latitudes has more
burden of aerosols (Aas et al., 2019). It is also reported
that the annual trends are mostly positive in the tropical
latitudes (Aas et al., 2019) and a positive trend in tropical
SH due to the increased amount of biomass burning that
gets transported from Australia and southeastern Africa
(Hsu et al., 2012). These results were analogous to our
findings where the AOD of NH (0.2) in the present study,
which is higher than the SH (AOD = 0.11).

The mean annual AOD and it's trends for the period
1971–2014 obtained from the MMM8 are shown in Fig-
ure 3. The spatial pattern of AOD over the land region
during the study period showed higher values than the
oceanic regions. The lower values of AOD over North
America and Europe were also observed. The mean value
of AOD over Northern Africa and Eastern Asian regions
is as high as 0.7, whereas they are as low as 0.05 over
some oceanic regions and parts of polar regions
(Figure 3a). Significant positive trends in AOD over parts
of South and Southeast Asia along with a steep trend
(+0.014/year or +0.6 mean annual AOD shift in the
entire study period) concentrated over India and China
can be seen in Figure 3b, which are in the tropical
regions of NH. These findings of the spatial pattern of
trends are analogous to the trends obtained from the
CERES (combined data sets of MODIS and ESM) where
the aerosol optical thickness over land is found larger
than the ocean (Obreg�on et al., 2021). The increasing
trends of AOD (Figure 3a), particularly in eastern China,
are reported to be due to the underestimation of the
recent decline in anthropogenic aerosol trends by CMIP6
during the recent decades (Wang et al., 2021). The in situ
measurements of aerosols indicate an increase in aerosols
over the Indian region (Babu et al., 2013). Also, Subba
et al. (2022) reported surface radiative forcing over differ-
ent parts of India such as Indo Gangetic Plains (IGP)

(−49 W�m−2), northeast India (−45 W�m−2) and the
southern peninsular region (−34 W�m−2) was mainly due
to the anthropogenic sulphates and carbonaceous aero-
sols for the study period 2011–2014. The negative signifi-
cant trend was found in the entire Europe region
(−0.011/year or −0.4 mean annual AOD shift in the
entire study period), western Russia, and the eastern
parts of North America. These negative trends over the
United States and Europe are mainly due to the reduc-
tion in emissions (Pozzer et al., 2015) which was the
result of the different policies followed to control emis-
sions in recent decades (Obreg�on et al., 2020; Wild, 2010;
Wild et al., 2005). This model simulated dipole trend pat-
tern between NM and NT regions is backed by the
satellite-derived and surface-based observations of aero-
sols (Wei et al., 2019; Yu et al., 2020). The increasing
trends of AOD in our study (Figure 3a) over North Africa
and the Middle East were also observed by Pozzer et al.
(2015) with the simulations of the EMAC (ECHAM5/
MESSy Atmospheric Chemistry) model but with the
lesser values compared to the observations. These differ-
ences in the magnitude of trends over these regions are
found to be due to the emission data without any vari-
ability of the source regions (Astitha et al., 2012) and
lesser amounts of precipitation simulations in the
models.

3.2 | Biases in AOD simulations relative
to MODIS and MISR data

The percent bias of AOD in MMM8 with the AOD of
MODIS and MISR are shown in Figure 4a,b. In both
cases, the bias pattern seems to be the same but with dif-
ferent bias percentages. Numerous studies exist in report-
ing the trends of AOD from models and satellites
(Cherian & Johannes, 2020; Gupta et al., 2022; Itahashi
et al., 2021; Li et al., 2021; Misra et al., 2016; Pozzer
et al., 2015), but a few studies reported the biases of
models with respect to the satellite data (Gliß et al., 2021;
Schutgens et al., 2020; Vogel et al., 2022). Understanding
the spatial distribution of percentage bias provides infor-
mation on model performance in different aerosol envi-
ronments. A study by Sockol et al. (2017) reported that
the GCMs of CMIP5 (CAM5, GFDL, MIROC, MRI-
ESM1-M) underestimated the AOD of MODIS by 15%
globally. However, the bias varies regionally as CAM5
overestimated the AOD along the equator and over large
portions of the Southern Hemisphere. It is also observed
that the bias between models and satellites can vary sea-
sonally. Studies on regional comparison of CMIP5 models
with MODIS and MISR AOD over India from 2000 to
2005 found that MMM overestimated the MISR while it
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underestimated MODIS AOD (Misra et al., 2016). A com-
parison of MODIS AOD with the CMIP6 ensemble of
15 GCMs for the period 2000–2014 showed that the
model underestimated the satellite data over different
parts of China (Ali et al., 2022). In the present analysis,
we have got a model bias of −10.6% with MODIS and
−13.8% with MISR on the global scale, respectively,
which means that the MMM8 underestimated the AOD
in most of the regions when compared against the satel-
lite AOD. It is worth noting that the bias of MMM8 with
MODIS and MISR is less in the Tropics (about −6% and
−8%) when averaged over the entire region. The bias in
the NM region with MODIS and MISR is −15.2% and
−10.1% while, it is +6.4% and −14.7% over the SM region,
respectively.

The mean bias is low over the Tropics because it is the
average of large positive and large negative biases. China

and India are the regions with more aerosol burden in the
tropical region and this will be masked when the bias is
averaged over the entire Tropics. Hence, we have also esti-
mated the Absolute Percent Bias (APB) to delineate the
changes from the reference datasets (Table 2). It is under-
stood that the global APB of MMM8 with MODIS and
MISR are 28.1% and 24.1%, respectively. The APB is high-
est over NP (56.4 and 48.1%) followed by SP (48.6 and
57.0%) with MODIS and MISR, respectively. The APB for
the ST is 33.2/18.4% and NT is 24.5/22.6% with MODIS/
MISR. Upon examination of various regions, it was
observed that all regions exhibited an absolute percent bias
(APB) ranging from 17% to 52%. When comparing these
regions to MODIS/MISR data, the Europe region displayed
the lowest APB, standing at 17.3/27.4, while eastern China
exhibited the highest APB, reaching 26.8/51.8. The
remaining regions had APB values as follows: India,

FIGURE 4 Spatial pattern of

percent bias (%) of mean annual AOD at

550 nm obtained from MMM8 against

the AOD of (a) MODIS and (b) MISR for

the period of 2001–2014. Missing data

points are represented in yellow
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22.8/22.1; Africa and Middle East, 26.7/22.0; North-East
America, 26.2/22.2; and South America, 23/18.8. It is to be
mentioned here that the study of Ali et al. (2022) reported
the APB of AOD over China between the CMIP6 and
MERRA-2 as 23%. The discrepancies in CMIP6 models
with the satellites in depicting the actual aerosol concen-
tration have been reported by Zhao et al. (2022), Wang
et al. (2021), and Li et al. (2021). The comparison of dust
optical depth (DOD) from CMIP6 with ModIs Dust Aero-
Sol (MIDAS) data sets for the period 2005–2014 found that
the CMIP6 overestimated the DOD by about 1.2–1.7 times
when compared against the satellites over northern China
and North America (Zhao et al., 2022). In the present
work, the MMM8 underestimated and overestimated the
AOD up to −40% and +80% in the IGP region in India and
central China, respectively, in comparison with MODIS.
Further, the MMM8 overestimated the AOD up to +105%
in eastern China (EC) and central China (CC) in compari-
son with MISR. The CMIP6 GCMs showed a positive trend
of AOD during 2006–2014 in EC and CC, contrarily the
observations depict a decreasing trend of aerosols in
the same period and this might be the reason for the high
bias over the regions of China (Wang et al., 2021). Wang
et al. (2021) have also compared the Indian and EC AOD
from CMIP6 of 2006–2014 with their own GCM AOD,
simulated with more reliable and updated emission data-
sets from Peking University, and stated that this discrep-
ancy is due to the adaptation of the apparently flawed
emission inventory—Community Emissions Data System

(CEDS) by CMIP6 GCMs. This negative trend in EC and
CC is attributable to the mitigation measures adopted by
China from the beginning of the 21st century by decreas-
ing its SO2 emissions by �70% from 2006 to 2014 (Li
et al., 2017).

Australia and the South African region have shown
a complete contrast of bias with MODIS and MISR.
When compared against the MODIS, MMM8 overesti-
mated the AOD over Australia and South Africa (more
than 100%) while MISR comparison did not show such
high biases in the aforementioned regions. South
Africa and Australia (Oceania) present low mean AOD
values and the occasional high aerosol loading events
are due to the wildfire smoke (Mukkavilli et al., 2019).
Gui et al. (2021) evaluated MISR's Level-3 AOD prod-
ucts using global ground-based and regional aerosol
data, finding good agreement but noting MISR's
tendency to overestimate low AOD and underestimate
high AOD values, mainly due to coarse-mode over-
estimation and fine-mode underestimation. Shaylor
et al. (2022) reported MODIS DB algorithm depicting
underestimation of AOD up to 50% compared to Multi-
Angle Implementation of Atmospheric Correction
(MAIAC) algorithms in the Australia region. Further-
more, Chen et al. (2022) reported that MODIS under-
estimated the AOD in the Australia (Oceania) region
(�−0.02 AOD) during the period 2012–2019. This
variation is primarily linked to sensor calibration in
capturing the small variations in the low aerosol

TABLE 2 Percentage of bias in MMM8 in different regions when compared against satellites (MODIS and MISR) for the mean 2010 to

2014 period

Regions

MMM8 vs. MODIS (%) MMM8 vs. MISR (%)

Abs. magnitude Total sum Abs. magnitude Total sum

India 22.8 −8.0 22.1 3.9

Eastern China 26.8 14.9 51.8 49.3

Europe 17.3 6.5 27.4 23.0

Africa and Middle East 26.7 4.1 22.0 −0.1

North-East America 26.2 −28.0 22.2 −16.8

South America 23.0 −9.7 18.8 −11.2

Globe 28.1 −10.6 24.1 −13.8

NH 28.7 −17.4 27.1 −10.6

SH 27.5 −3.5 21.0 −17.0

NP 56.4 −56.4 48.1 −46.4

NM 25.6 −15.2 27.1 −10.1

NT 24.5 −10.0 22.6 −3.4

ST 33.2 −4.0 18.4 −12.6

SM 15.3 6.4 17.0 −14.7

SP 48.6 −48.6 57.0 −57.0
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loading atmospheres (Sayer et al., 2019). It is reported
that biomass-burning aerosols show more absorbing
values in the recent global climate models (Brown
et al., 2021). The contribution of biomass-burning
aerosols to the global biomass burning by Africa is
�52% and Australia is �7% (van der Werf et al., 2010).
Also, the aircraft measurements on biomass burning
aerosols over Africa showed large discrepancies
when compared with the models. These might contrib-
ute to the higher amounts of bias in the models with
the satellites (MODIS and MISR) over Australia and
African regions. It is also worth noting that the
trends obtained from the MODIS and MISR showed
different signs over Northern Hemispheric high-
latitude oceans and Southern Hemisphere oceans
during the period 2000–2019 (Quaas et al., 2022). Over-
all, the MMM8 might underestimate or overestimate
the AOD relative to MODIS/MISR over different
regions, but the MODIS and MISR themselves over-
estimate or underestimate the AOD at different regions
relative to other satellites and ground-based measure-
ments (Chen et al., 2022; Levy et al., 2018; Schutgens
et al., 2020). So, MODIS/MISR itself can be responsible
for part of the discrepancies observed in the present
study.

3.3 | Global distribution of
model-derived AE

The spatial pattern of AE obtained from the combination
of 440–550 nm, 440–870 nm, and 550–870 nm for the
January and July months, from the perturbed initial con-
dition ensemble of models MRI-ESM2-0 and MPI-ESM-
1-2-HAM to the period 1971–2014 are shown in Figure 5.
Also, the derivative of the AE from the two models for
the January and July months on a global scale are shown
in Figure 6. The selection of the different wavelength-
AODs to estimate the AE will help to understand the
various particle sizes in the atmosphere. The spatial dis-
tribution of AE and the derivative of AE infer how the
climate models show the size distribution of regional
aerosols across the globe. From Figures 5 and 6, it can be
observed that the AE has lower values over the ocean
regions compared to the land region, which represents
the dominance of coarse mode particles over oceanic
regions. However, the values of AE varied when the com-
bination of different wavelengths was considered. The
AE estimated from 550 and 870 nm (Figure 5i–l) have
shown higher value distribution over the oceanic regions
when compared with the other combinations such as
440–550 nm (Figure 5a–d) and 440–870 nm (Figure 5e–h).

FIGURE 5 Spatial pattern of Angstrom exponent (α) obtained from AOD at wavelength combination of (a) 440–550 nm for January

(MRI-ESM2-0), (b) 440–550 nm for July (MRI-ESM2-0), (c) 440–550 nm for January (MPI-ESM-1-2-HAM 0), (d) 440–550 nm for July (MPI-

ESM-1-2-HAM), (e) 440–870 nm for January (MRI-ESM2-0), (f) 440–870 nm for July (MRI-ESM2-0), (g) 440–870 nm for January (MPI-ESM-

1-2-HAM 0), (h) 440–870 nm for July (MPI-ESM-1-2-HAM, (i) 550–870 nm for January (MRI-ESM2-0), (j) 550–870 nm for July (MRI-

ESM2-0), (k) 550–870 nm for January (MPI-ESM-1-2-HAM-0), (l) 550–870 nm for July (MPI-ESM-1-2-HAM) for the 1971–2014 period
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Similar features are found with the AE values estimated
from the MPI-ESM-1-2-HAM model too. The AE values
are maximum in January over Southern Asia, Southern
Africa, and South America regions of the Tropics when
compared to other land regions (Figures 5 and 6). The AE
pattern obtained from MPI-ESM-1-2-HAM over land
showed the dominance of fine-mode aerosols over many
regions and the estimate of AE is higher in most of the
regions compared to the AE obtained from the
MRI-ESM2-0 model. The AE pattern estimated from the
440–550 nm AOD showed the dominance of coarse-mode
aerosols over the polar regions. While the AE pattern
estimated from the combination of 440–870 nm and
550–870 nm of AOD showed the dominance of fine-mode
aerosols over the southern polar region and both the polar
regions, respectively. The presence of the fine-mode parti-
cles is found over some of the oceanic regions along with
regions of North America, Russia, etc. when estimated
from the combination of 550–870 nm AOD. AE pattern
estimated for July month from the two models shows the

dominance of coarse and fine-mode particles over ocean
and land, respectively (Figure 5b,d,f,h,j,l). The values of
AE increased during July month when compared to Janu-
ary month with more spatial distribution. The pattern of
the first derivative of AE obtained from the MRI-ESM2-0
for the January and July months showed the presence of
fine-mode particles in the January month over the
southern polar region and the presence of coarser mode
particles over the same region during the July month
(Figure 6a,b). However, the model MPI-ESM-1-2-HAM
showed the pattern of the first derivative of AE of
fine-mode particles over the southern polar region
(Figure 6c,d).

The overall analysis shows a disagreement between
the two models in depicting the AE pattern over the
southern polar region when the combination of 550–
870 nm AOD has been considered. Also, the disagree-
ment is conspicuous with the pattern of the first deriva-
tive of AE obtained for July month over the southern
polar region. Another point that is worth noting is the

FIGURE 6 Spatial pattern of the derivative of Angstrom exponent (α0) at wavelength combination of 440, 550, and 870 nm for (a)

January month (MRI-ESM2-0), (b) July month (MRI-ESM2-0), (c) January month (MPI-ESM-1-2-HAM-0), (d) July month (MPI-ESM-1-2-

HAM) for the 1971–2014 period
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AE pattern could show the dominance of fine- and
coarse-mode aerosols during January and July, respec-
tively, obtained from both models in the Indian region,
particularly matching with the seasonality of the Indian
subcontinent. The January/July months are winter/mon-
soon months over India characterized by the dominance
of continental/coarse mode aerosols. Surface wind clima-
tology figures obtained from the NCEP reanalysis data-
sets during 1971–2014 for the January and July months
provide a clue for the transport of the aerosols to different
regions (Figure S5a,b). From Figure S5a, it can be seen
that India has the dominance of north-westerlies in Janu-
ary while it is mostly south-westerlies during the month
of July (Figure S5b). North-westerlies from the continen-
tal region depict the transport of anthropogenic aerosols
that are mostly fine mode (Yan et al., 2021) during winter
months over India. Southwesterlies during July represent
the transport of the oceanic aerosols that are mostly
coarse mode (Fitzgerald, 1991) over India.

A few studies reported the size distribution of aero-
sols using the AOD simulations across different regions

of the globe (Kaiser et al., 2012; Liu et al., 2006; Mortier
et al., 2020; Tegen et al., 2019). Studies by Mortier et al.
(2020) reported that the CMIP6 models were able to
well capture the particulate matter, sulphates, and the
trends of AE in major portions of the globe. The key
findings of Tegen et al. (2019) on the validation of AE
simulated from the ECHAM6.3-HAM2.3 model found
that the AE patterns estimated from 460 and 540 nm
AOD have shown the presence of fine-mode particles
over the regions of North Africa, South America, and
ocean. Simulations using the GFAS (Global Fire Assim-
ilation System) version 1.0 emission dataset also indi-
cated the dominance of fine-mode aerosols in those
regions (Kaiser et al., 2012). The discrepancies between
model-simulated and observational AE are reported to
be due to mainly the aerosol schemes assumed in the
models for simulating the AOD. Liu et al. (2006)
reported that the global distribution of AE obtained
from the general circulation models shows a clear bias
with the in situ measurements, which is due to the
higher variability of AOD obtained from the models.

FIGURE 7 Spatial pattern of mean Angstrom exponent (α0) (a) MODIS (440–550 AE), (b) AATSR SU (550–870 AE), (c) MPI-ESM-

1-2-HAM (440–550 AE), (d) MPI-ESM-1-2-HAM (550–870 AE), (e) MRI-ESM2-0 (440–550 AE) and (f) MRI-ESM2-0 (550–870 AE) for the

2002–2012 period
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Although the models successfully capture spatial and
seasonal variations that align with global circulation pat-
terns, it is essential to validate the Angstrom exponent
(AE) values generated by these models against satellite
retrievals. In this section, we present the validation and
comparison of simulated AE values derived from the
MPI-ESM-1-2-HAM and MRI-ESM2-0 models' PPE with
data from MODIS and AATSR SU. Figure 7 illustrates
the spatial patterns of mean AE, as follows: (a) MODIS
(440–550 AE), (b) AATSR SU (550–870 AE), (c) MPI-
ESM-1-2-HAM (440–550 AE), (d) MPI-ESM-1-2-HAM
(550–870 AE), (e) MRI-ESM2-0 (440–550 AE) and (f)
MRI-ESM2-0 (550–870 AE). Since satellite retrievals of
AOD data only have data over land for different spectral
bands, our analysis specifically focuses on land-based AE
features. A notable observation is that the MRI-ESM2-0
model consistently underestimates AE compared to both
satellite observations (Figures 7 and S6). Specifically,
MRI-ESM2-0 globally underestimates AE by 84% con-
cerning MODIS and 54% concerning AATSR SU. In
contrast, the MPI-ESM-1-2-HAM model exhibits differing
behaviour, globally underestimating AE by 43% in the
440–550 AE range against MODIS but overestimating AE
by 32% compared to AATSR SU. On a regional scale,
MPI-ESM-1-2-HAM demonstrates fewer biases in AE,
particularly in regions such as India (APB, 21.1%/17.3%),
Africa, and the Middle East (ABP, 21.8%/24.8%), when
compared to MODIS/AATSR SU AE values. Irrespective
of the region, MRI-ESM-0 consistently underestimates
AE values by 40%–80%. This consistent underestimation
in the models suggests that they may either simulate
larger aerosol particles than what is observed or
underestimate the fraction of fine-mode aerosols.
While the MPI-ESM-1-2-HAM model may demonstrate
improved performance in certain regions, a comparison
with AATSR-SU data indicates that the models tend to
underestimate AE in Europe and North-East America. It
is worth noting that the significant overestimation of AE
over Australia and South America, compared to AATSR
data, may be attributed to retrieval errors in the satellite
product (Gliß et al., 2021).

4 | CONCLUSIONS

The increasing recognition of the importance of atmo-
spheric aerosols has drawn the scientific community to
use large-scale aerosol datasets for different weather and
climate applications. The model simulations of AOD are
abundant for the user community. However, the utiliza-
tion of these datasets needs careful attention due to their
uncertainties.

Hence, the evaluation of AOD datasets obtained
from the models is essential for reliable climate pre-
dictions. In the present study, we have analysed the
AOD of eight GCMs of CMIP6 to infer their behav-
iour in terms of magnitude, trends, bias, as well as
size distribution with respect to satellite data observa-
tions. Based on our analysis we conclude the
following:

1. The global AOD trend is insignificantly declining for
the period 1971–2014. Significant positive trends were
observed over the northern tropical region. The AOD
over the Northern Hemisphere is high (0.2) due to its
land–ocean contrast compared to the Southern Hemi-
sphere for which the mean AOD is (0.11).

2. The MMM8 has overestimated the MODIS AOD over
North Africa, India, China, and Australia while this
overestimation is confined to North Africa and eastern
China when compared against MISR AOD. The APB
between MMM8 and MODIS/MISR is 28.1% and
24.1% over the globe.

3. During the winter and summer seasons, the spatial
distribution of AE revealed a dominance of fine- and
coarse-mode particles, respectively, which replicated
the seasonality of aerosols. The AE obtained from the
perturbed initial condition ensemble of MPI-ESM-
1-2-HAM has shown a better agreement with the AE
of AATSR SU (550–870 nm) than MODIS' AE (440–
550 nm). In contrast, MRI-ESM2-0 consistently under-
estimated AE across various regions and wavelength
ranges, indicating a prevalence of larger aerosol parti-
cles in the model's depiction of the aerosol size distri-
bution compared to satellite observations.

Though there are studies for evaluating the global
AOD simulations with the satellites and in situ measure-
ments, the present study deals with the CMIP6 simula-
tions of AOD in comparison with MODIS and MISR.
This may help in understanding the performance of
CMIP6 models in terms of trends, spatiotemporal distri-
bution, and their biases with the satellites regionally and
globally as well. In this way, the results of the study
would provide additional insights into the knowledge of
the global distribution of AOD and their size distribution.
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