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SUMMARY

Future changes in heat wave characteristics over India have been analyzed using Coordinated Regional
Climate Downscaling Experiments (CORDEX) for South Asia (SA) regional climate model simulations for
mid-term (2041–2060) and long-term (2081–2099) future under the representative concentration
pathway (RCP) 4.5 and RCP 8.5 emission scenarios, respectively. SMHI_CSIRO-MK3.6 was found to be
the best model in simulating heat wave trend over India for historical period. Future projections show a
four-to-seven-fold increase in heat wave frequency for mid-term and long-term future under RCP 4.5 sce-
nario, and five-to-ten-fold increase under RCP 8.5 scenariowith increase in frequency dominating intensity
in both the scenarios. Northwestern, Central, and South-central India emerged as future heat wave hot-
spots with largest increase in the south-central region. This high-resolution regional future projection of
heat wave occurrence will serve as a baseline for developing transformational heat-resilient policies
and adaptation measures to reduce potential impact on human health, agriculture, and infrastructure.

INTRODUCTION

An unequivocal influence of anthropogenic activities has resulted in an increase of 1.07�C in global mean surface temperature above prein-

dustrial levels.1 The widespread impact of the anthropogenic warming can be observed in the strengthening episodes of extreme weather

events such as heat wave, droughts, forest fires, floods, etc., as well as irreversible long-term changes such as loss of biodiversity, ocean acid-

ification, and sea ice melting, etc.1 This increase is much pronounced at the regional level because with every degree rise in global temper-

ature, the regional warming becomes larger.1,2 Regional warming records show the increase to be of 1.5�C in at least one season in the re-

gions where 20%–40% of global population lives; hence, regional assessments are crucial.1

Among the extreme weather events, heat waves have emerged as the most prominent tell-tale sign of climate change becoming more

frequent, intense, and of longer duration in recent decades.1 The most recent year 2022 observed unprecedented heat wave events

exceeding previous thresholds with severe impacts for different regions of the world. These extreme temperature events have been found

to have severe implications on health, agriculture, natural ecosystems, and infrastructure.3–9 Studies on understanding the changing charac-

teristics of heat waves have found the phenomenon to be driven by synoptic atmospheric circulations and intensified by regional land atmo-

sphere interactions.10–12 The delay of monsoon, low evaporative cooling, and depleted soil moisture increase the sensible heat flux and exac-

erbate the prevailing heat wave conditions.8,12,13 Heat waves have emerged as an immediate health hazard increasing morbidity and huge

mortality episodes across the globe such as during European heat wave of 2010 (70,000 deaths), Russian heat wave (54,000 deaths), and Indian

heat wave of 2015 (>2,500 deaths).11,14–16 India has reported amarked increase in heat wave intensity, frequency, and duration in the past half

century.8,11,17,18 Singh et al.8 found a spatiotemporal shift in the heat wave events over India in the last seven decades which has given rise to

the three heat wave hotspots of the country, i.e., Northwestern, Central, and South-Central India. During the recent unusual heat wave

episode of 2022 Northwestern and Central India, two of these three hotspots experienced their hottest April in 122 years.17 Zachariah

et al.19 reported that such episodes have become 30 times more likely due to climate change.

In such scenario, it becomes crucial to identify the future hotspots of heat wave in India which would require using high-resolution climate

projections from state-of-the-art climate models. With the aid of Global Climate Models (GCMs), the scientific community has been able to

simulate the characteristics of heat waves and other extremeweather events for historical and future scenarios.18,20–24WhileGCMshave found

wide application in future projection studies, due to their coarse resolution they fail to capture the local dynamic changes that modulate

climate signals at a regional scale. This inability of GCMs may limit their usage in impact assessment at a regional scale.25,26 In order to study

the regional impact of extreme weather events, robust information to detect local climate change signals is needed; hence, high-resolution

regional climate projections are of vital importance.26–28

Dynamical downscaling using regional climate models (RCMs) is an efficient technique to study climate-related risk at a regional scale as

they provide reliable data of climate parameters at a higher resolution.26,29–31 Plavcová and Kyselý32 stated an improvement in the simulation
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of atmospheric circulation by RCM over their driving GCMs. Application of RCMs provides the added value for generation of high-resolution

climate information which GCMs are unable to provide.31,33–35 Giorgi31 stated that downscaled regional climate projections from Coordi-

nated Regional Downscaling Experiment (CORDEX) are efficient for understanding and characterizing the regional to local climate phenom-

enon along with their variability and trends and have been widely explored to study the climatology, trends, extremes, and future projections

of climatic variables over different domains of the world.26,30,33,36–39 Molina et al.40 studied future projections of heat waves using EURO-

CORDEX RCM simulations over Mediterranean basin for representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios and found

a large increase in the duration and intensity of heat waves for the 2071–2100 period.

Sanjay et al.41 studied the future change in seasonal mean near-surface air temperature and precipitation over the Hindu Kush Himalayan

region using thirteen CORDEX South Asia (SA) RCMs. The results show a high confidence and low uncertainty among downscaled RCMs in

projecting the increase in precipitation intensity and warming by the end of 21st century under RCP 8.5 scenario. Choudhary et al.37 reported

an added value to climate projections by CORDEX-SA RCMs in the coastal regions of India with reduced bias in precipitation in the Western

Ghats region. CORDEX SA datasets have been used to investigate the threshold crossing time for eight different warming targets over India

between 1.5�C and 5�C using nine CORDEX-SA experiments.42

While the regional climate projections from CORDEX-SA datasets have been explored to study the climate of India, heat wave future pro-

jections using the dataset are yet to be done. Future projection of heat waves over India has been primarily studied using simulations from

GCMs while large ensemble RCM-based studies are lacking.5,38,43–45 Rohini et al.46 projected an increase of an average two events and 12–

18 days in duration of heat wave events over India during 2020–2064 under RCP 4.5 scenario with an increase of 0.5 event/decade and 4–

7 days/decade in heat wave frequency and duration, respectively, over central India using Coupled Model Intercomparison Project (CMIP)

5 GCMs. Similarly, Mishra et al.36 utilized sevenGCMprojections and projected future increase in severe heat waves over India to be 30 times

higher than the present climate by the end of the 21st century. Dubey & Kumar47 studied heat wave future projections over India using a single

RCM projection and noted the limitations associated with projections from few RCMs and recommended application of large ensemble

model-based assessment of heat wave over India for robust future projection. Hence, to address this gap of regional climate information-

based robust assessment of heat wave over India, the present study is conceptualized and uses seventeen dynamical downscaled simulations

from 3 RCM ensembles within CORDEX-SA framework to assess themodel performances and future projection of changing characteristics of

heat wave, i.e., frequency, intensity, and duration for mid-term (2041–2060) and long-term (2081–2099) future under RCP 4.5 and RCP 8.5 sce-

narios. This ensemble-based assessment will provide a range of possible heat wave trajectories and emerging future heat wave hotspots. The

study will provide an added value to the present understanding and regional impact assessment of heat waves over India. Also, the findings of

themodel evaluationwill pave way for improvement in individual model physics in simulating Indian heat wave climatology. The differences in

downscaled simulations from the same GCMs due to use of different RCM for downscaling will be also useful for future CORDEX-SA down-

scaling initiatives from CMIP6 models.

RESULT

Performance evaluation of RCMs

Climatological mean (MEA-T)

The spatial distribution of model and observed climatological mean maximum temperature (MEA-T) and mean bias (MB) for March–June

during climatological period of 1971–2000 were compared in the study to assess the model performance (Figures 1A and 1B). Both warm

and cold bias is found to be associated with model simulations in comparison to the observedMEA-T range of 21.90�C–39.32�C. Indian Insti-

tute of TropicalMeteorology (IITM) ensemblemodels showed a clear underestimation ofmean temperatures with an inter-ensemble variation

of �11.79�C (IITM_GFDL-ESM2M) to 37.09�C(IITM_CSIRO-Mk3) where the Commonwealth Scientific and Industrial Research Organization

(CSIRO) model IITM_CSIRO-Mk3 model was found to be the best among the suit with much lower bias than other models.

The Swedish Meteorological and Hydrological Institute (SMHI) ensemble models showed much lower bias than IITM ensemble models

(Figure 1B) and simulated mean temperature closer to observation except for the northern mountainous regions; the MEA-T range varies

from �14.67�C (SMHI_GFDL-ESM2M) to 41.76�C (SMHI_CSIRO-Mk3). However, the maxima of MEA-T mean temperature in IITM ensemble

RCM were found to be spatio-temporally closer to the observation with lower mean bias (warm) in maxima ranging between 0.08�C
(IITM_GFDL-ESM2M) to +2.54�C (IITM_CSIRO-Mk3) whereas the SMHI ensemble RCMs overestimated the maxima by +8.28�C
(SMHI_IPSL-CM5A-MR). RE_MPI-ESM-LR showed the largest variation with both the highest cold and warm bias of �31.86�C and 8.28�C,
respectively. Among the multi-model ensemble (MME) means the SMHI_MME captured the maxima (39.09 C) better than IITM_MME

(34.65 C). However, the overall area average mean bias showed that IITM ensemble RCMs underestimated the climatological mean while

the SMHI ensemble was better in approximating the observed temperature (Table 1).

Spatio-temporal variability and probability distribution. Taylor diagram summarizes the model performance in simulating long-term

spatial mean temperature over India (Figure 2). The inter-model spread for Root-mean-square error (RMSE) among the ensembles shows

IITM ensemble have comparatively higher RMSE (8.38–11.07) against SMHI ensemble (8.62–9.16) but higher pattern correlation coefficient

(�0.9) against the SMHI ensemble (0.86) before bias correction. Bias correction significantly improves in mean temperature simulations

with RMSE and mean absolute error (MAE) being reduced to zero while index of agreement and correlation increasing to 1 for all the

RCM simulations. Table 2 depicts the results of model performance metrics and mean values before and after bias correction and shows

that mean and variance of the individual models and MME mean are same as the observed.
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The non-parametric kernel density estimate (KDE) distribution with a kernel bandwidth of 0.5, representing a higher fidelity of proba-

bility density distributions of maximum temperature, is assessed for model simulations against observation (Figure 3). The distribution

shows comparatively larger variation in location parameter from 35�C (observed) to around 32�C for the IITM ensemble members (repre-

sented by different shades of blue in Figure 4) while showing lower variation with �34�C for SMHI ensemble (represented by different

shades of red in Figure 4). The added advantage of variance scaling is reflected in the KDE as all RCM simulations approximated the scale,

location, and shape parameter of the distribution similar to observation. IITM_CSIRO (�5.22�C–51.71�C), IITM_MPI-ESM (�2.61�C to

53.45�C) of the IITM ensemble and SMHI_HadGEM2-ES (�2.16�C–51.23�C), SMHI_EC-EARTH (�3.87 to 52.24) of SMHI ensemble showed

better agreement with the observation. Also, the IITM_MME (�0.58�C–52.08�C) and SMHI_MME (�3.06�C–51.40�C) showed better daily

temperature distribution among all model simulations. Similarly, the improvement after bias correction can be seen in the empirical cu-

mulative distribution function (ECDF) (Figure 3B) where all RCMs simulated the temperature in the observed distribution after bias

correction.

Temperature extremes

The model performance in simulating very warm day threshold (TX95t) and seasonal maximum value of daily maximum temperature (TXx) is

assessed where three ensemble outputs and their MME means before and after bias correction have been assessed (Figures 1 and 4). It is

observed that before bias correction all of the models have underestimated both the indices recording temperatures as low as �4�C in

the mountainous region due to existing cold bias in the model. Over other parts of the country IITM ensemble models underestimate the

indices (�2�C–3�C) while SMHI ensemble models overestimate the indices (�4�C–5�C). After bias correction the indices show similar spatial

patterns and magnitude of TX95t thresholds corresponding to observed patterns with a�G0.5�C variation from the observedmean value of

44.87�C after bias correction (Figure 4). However, the TXx index reflects the differences in extreme temperature simulation where an overes-

timation of +4�C to +10�C was observed among the IITM ensemble member simulating higher extremes in the Central, South-Central, and

eastern coastal region of the country which are also among the most heat wave vulnerable regions.47

Figure 1. Climatological mean maximum temperature over India

(A) Climatological mean maximum temperature simulated by CORDEX-SA RCMs over India for Mar–Jun (1971–2000).

(B) Mean bias simulated by CORDEX-SA RCMs over India for Mar–Jun (1971–2000).
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The onlymodel that approximates the observed pattern with lower warmbias is IITM_CSIRO-MK3. The SMHI ensemblemodels show rela-

tively better spatial variability with a lower underestimation of +2�C to +7�C than observation among which SMHI_EC-EARTH,

SMHI_HadGEM2-ES, and SMHI_GFDL-ESM2M capture the spatial patterns and extreme value closer to the observation. Similarly, the

SMHI_MME mean simulated the TXx better both spatially and in mean within a range of 34.85�C–50.47�C than IITM_MME (35.33�C–
51.13�C). RE_MPI-ESM-LR showed the highest overestimation of +12�Cwith extreme values reaching 59.83�C over a few grids in the northern

region.

Table 1. Mean, standard deviation (SD), root-mean-square error (RMSE), mean absolute error (MAE), and index of agreement (d) of raw (mod) and bias-

corrected (var) model data datasets for long-term mean maximum temperature in historical period (1971–2005)

RCM

Mean SD MAE RMSE PBIAS d

IMD = 34.69 IMD = 4.08 Var = 0 Var = 0 Var = 0 Var = 1

(Mod) (Var) (Mod) (Var) (Mod) (Mod) (Mod) (Mod)

IITM_CNRM-CM5 26.62 34.69 10.14 4.08 8.07 10.52 �23.3 0.6

IITM_CanESM2 27.79 34.69 9.68 4.08 6.89 9.31 �19.9 0.64

IITM_CSIRO-Mk3 30.22 34.69 10.55 4.08 4.55 8.38 �12.9 0.69

IITM_IPSL-CM5A-LR 28.57 34.69 10.16 4.08 6.13 9.08 �17.6 0.66

IITM_MPI-ESM-MR 26.56 34.69 9.93 4.08 8.12 10.47 �23.4 0.6

IITM_GFDL-ESM2M 26.19 34.69 10.39 4.08 8.49 11.03 �24.5 0.59

RE_MPI-ESM-LR 34.32 34.69 11.03 4.08 4.3 7.78 �1.1 0.72

SMHI_HadGEM2-ES 32.43 34.69 11.79 4.08 4.03 8.86 �6.5 0.68

SMHI_CNRM-CM5 30.70 34.69 11.48 4.08 4.49 9.16 �11.5 0.66

SMHI_CanESM2 33.41 34.69 11.80 4.08 4.17 8.62 �3.7 0.69

SMHI_CSIRO-Mk3 33.25 34.69 11.62 4.08 4.16 8.48 �4.1 0.7

SMHI_GFDL-ESM2M 30.38 34.69 11.53 4.08 4.65 9.34 �12.4 0.65

SMHI_IPSL-CM5A-MR 33.64 34.69 12.08 4.08 4.4 8.87 �3 0.68

SMHI_MIROC5 31.03 34.69 11.21 4.08 4.2 8.75 �10.5 0.68

SMHI_MPI-ESM-LR 31.22 34.69 11.30 4.08 4.18 8.77 �10 0.67

SMHI_NorESM1-M 31.54 34.69 11.70 4.08 4.06 9.03 �9.1 0.67

SMHI_EC-EARTH 30.14 34.69 11.03 4.08 4.84 9.04 �13.1 0.66

IITM_MME 27.66 34.69 10.12 4.08 7.03 9.72 �20.3 0.63

SMHI_MME 31.77 34.69 11.54 4.08 3.94 8.78 �8.2 0.68

Figure 2. Taylor diagram of CORDEX-SA RCMs

(A) Taylor diagram showing model performance of CORDEX-SA IITM ensemble RCMs before and after bias correction.

(B) Taylor diagram showing model performance of CORDEX-SA SMHI ensemble RCMs before and after bias correction.
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Heat wave events

The spatial distribution of frequency, intensity, and duration for the average heat wave events/year during Mar-June (1971–2005) is assessed

(Figure 5). The highest number of heat wave (HW) events are observed in northern, northwestern, central, and south-central region of the

country with no HW being observed in the south-western region of the country. All of the RCMs successfully simulate heat wave in these re-

gions which affirms their ability in capturing the regional features of the plain, hilly, and coastal regions of India. RE_MPI-ESM-LR underesti-

mates the frequency of the heat wave events. The zones ofmaximumheat wave frequency are best reproduced by the IITM_CSIRO-Mk3.6 and

IITM_GFDL-ESM2M from IITM ensemble and SMHI_CSIRO-Mk3.6, SMHI_IPSL-CM5-MR, and SMHI_EC-EARTH from SMHI ensemble.

Further, SMHI_NorESM1-M and SMHI_HadGEM2-ES also capture the spatial variability with lesser overestimation than other models.

IITM_CNRM-CM5 overestimates the spatial occurrence and frequency of heat wave events reaching up to 8 events/year in most of the north-

ern-northwestern, central, south-central, and eastern region making it the most unreliable model to study heat waves over India. The MME

means are found to simulate heat wave zones reasonably well among all the models with slight overestimation in the frequency. The over-

estimation can be attributed to the excess heat wave events simulatedby the ensemblemembers. Themaximum intensity of heat wave events

is observed over the Northwestern, Central, and South-central region reaching up to 47�C while the minimum intensity is observed to be

32.4�C over the western coast and northern hilly areas.

In the IITM ensemble it was observed that IITM_CSIRO-Mk3.6 captures both the spatial variability and the intensity range best followed by

IITM_IPSL-CM5A-LR and IITM_CNRM-CM5, while IITM_CanESM2, IITM_MPI-ESM-MR, and IITM_GFDL-ESM2M overestimated the intensity

of heat wave events reaching up to 52�C–56�C. The overestimation is mainly observed over the central and eastern region consisting of Odi-

sha, West Madhya Pradesh, Chhattisgarh, Vidarbha, and Telengana region. As these regions fall into heat wave-prone zones,8 this overesti-

mation of intensity (3�C–5�C) must be considered when making future projections. SMHI ensemble models reproduced both the spatial

occurrence and magnitude of the intensity better than IITM ensemble and are closer to the observation with intensity between 30�C and

49�C. The intensity simulated by SMHI_CSIRO-Mk3.6, SMHI_IPSL-CM5A-MR, and SMHI_EC-EARTH corresponds to the observation most

closely. RE_MPI-ESM-LR underestimated the intensity in the eastern region of the country. Both theMMEmeans capture the spatial variability

and range of the intensity well sparing an overestimation in the central region (WesternMadhya Pradesh) by the IITMMMEmean. The boxplot

in Figure S5 shows distribution of heat wave intensity for historical period where the quartile range and median intensity of SMHI ensemble

models and both MME means are found to be more consistent with the observation than IITM ensemble models observing 1�C–2�C higher

median intensity.

Table 2. Mean change in maximum temperature over India for mid-term (2041–2060) and long-term future (2081–2099) under RCP 4.5 and RCP 8.5

scenario

RCM

RCP 4.5 RCP 8.5

Mid- term (2041–2060) Long-term (2081–2099) Mid- term (2041–2060) Long-term (2081–2099)

IITM_CNRM-CM5 1.31 1.67 1.84 2.54

IITM_CanESM2 1.69 2.09 2.05 3.71

IITM_CSIRO-Mk3 2.58 3.24 2.34 4.98

IITM_IPSL-CM5A-LR 1.44 1.77 1.79 3.29

IITM_MPI-ESM-MR 2.02 2.35 2.35 4.72

IITM_GFDL-ESM2M 1.64 2.16 1.91 3.65

RE_MPI-ESM-LR 2.06 2.54 2.39 5.73

SMHI_EC-EARTH 1.93 – 2.20 –

SMHI_CNRM-CM5 1.76 2.13 2.06 3.58

SMHI_CanESM2 2.20 2.94 2.99 –

SMHI_CSIRO-Mk3 2.28 3.11 2.41 4.95

SMHI_GFDL-ESM2M 1.82 2.23 1.91 4.16

SMHI_HadGEM2-ES 2.06 2.95 2.57 4.86

SMHI_IPSL-CM5A-MR 2.26 3.5 3.03 6.09

SMHI_MIROC5 2.06 2.35 2.59 4.33

SMHI_MPI-ESM-LR 2.06 2.39 2.47 5.52

SMHI_NorESM1-M 1.85 2.26 2.33 4.33

SMHI_MME 2.13 2.93 2.56 4.83

IITM_MME 1.86 2.29 2.12 4.43

The highest changes in each scenario are highlighted by shading.

ll
OPEN ACCESS

iScience 26, 108263, November 17, 2023 5

iScience
Article



The third characteristic is duration which exacerbates the impact of the heat wave causing morbidity and mortality in case of prolonged

duration.5 Figure 5C shows that the HW duration ranges from 2 to 18 days with the longest duration over the northern and Central India.

IITM_CanESM2, which overestimated intensity, overestimates the duration in the central, eastern, and south-central region while underesti-

mating in the northern region with an average of 4–6 days. IITM_CSIRO and IITM_IPSL-CM5A-LR approach the observation better than other

models of the ensemble. Similarly, for SMHI ensemble, SMHI_CSIRO-Mk3.6 and SMHI_IPSL-CM5A-MR appear closer to the observationwhile

the SMHI_CanESM2, SMHI_MIROC, and SMHI_GFDL-ESM2M overestimate the duration over most of the region of the country. IITM MME

mean simulated duration in the heat wave-prone zones is better than SMHI MMEmean. Figure S5 shows boxplot distribution of duration for

historical period which presents nearly similar distribution and median duration simulated by all RCMs as compared to the observed.

Trend analysis

A significantly increasing trend of 0.2 events/yr over the western, central, and south-central region of the country is observed while a signif-

icantly decreasing trend ranging between �0.1 and �0.2 events/year over the eastern region of the country (Figure S2) is observed. These

results correspond to the earlier studies by Singh et al.8,28 where similar significant increase and decrease were observed in the regions.

The trends observed by the model simulations varied in spatial occurrence and magnitude. While majority of the IITM ensemble models

observed an increasing trend in the northwestern and central region of the country with an overestimation of 0.1–0.2 events/year, the

decrease in the eastern region was not reproduced by any of the models. Among all the models, IITM CanESM2 captured the spatial

Figure 3. Probability density distribution of daily maximum temperature

(A) Kernel Density estimate distribution of CORDEX -SA RCMs before and after bias correction.

(B) Empirical Cumulative frequency distribution of CORDEX- SA RCMs before and after bias correction.
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occurrence of HW events in Western Rajasthan andWestern Madhya Pradesh while IITM IPSL-CM5-LR overestimated both the spatial occur-

rence and frequency of heat wave events over these regions and decrease in the south-eastern region comprising Odisha and Rayalseema.

Among the SMHI ensemble models that overestimate both the spatial occurrence and frequency of events, SMHI CSIRO-Mk3.6 shows similar

trend as observed in western, northwestern, and central India with a significant increase of 0.2 event/year and a decrease of�0.5 events/year

in the eastern region. SMHI GFDL-ESM2M, SMHI_MIROC, and SMHI_NorESM1-M also simulate the increasing trend closer to the observa-

tion. All of the SMHI models show a consistent increasing trend in the northern region consisting of the Uttarakhand and Shimla against the

negative trend shown in observation. RE_MPI-ESM-LR also follows the pattern observed by the SMHI ensemble members. Both the MME

means overestimate the frequency and spatial occurrence of heat wave events recording an increase of 0.4 events in the northern, north-

western, central, and south-central region, but IITM MME mean performs better than the SMHI MME mean.

Future changes in maximum temperature

Future changes in maximum temperature has been assessed in the study prior to heat wave projections to identify the pattern of future tem-

perature evolution (Figures S3 and S4). Over India, a mean change of 1.31�C–2.58�C (mid-term) and 1.67�C–3.54�C (long-term) under RCP 4.5

scenario and 1.79�C–3.03�C (mid-term) and 2.54�C–6.09�C (long-term) under 8.5 scenario (Table 2) was observed, which vary spatially for

different regions (Figures S3 and S4). Northern, Northwestern, and Central India may observe an increase of 2.5�C (mid-term) to 4�C(long-
term) projected by SMHI_IPSL-CM5A-MR and SMHI_CSIRO-Mk3.6, as well as eastern and southern region projected by IITM_ CSIRO-

Mk3.6 and RE_MPI-ESM-LR under RCP 4.5 scenario. The regions will further observe a rise of �4�C (mid-term) to �6�C (long-term) under

RCP 8.5 scenario with highest increase of�8�C simulated by SMHI_IPSL-CM5A-MR over the northern region. IITM ensembles RCMs simulate

higher changes than SMHI ensemble RCMs and RE_MPI-ESM-LR for long-term future. The respective MME mean follows the pattern dis-

played by the ensemble models.

Heat waves projections over India

Future projection of heat waves over India has been assessed for mid-term (2041–2060) and long-term (2081–2099) future under RCP 4.5

and 8.5 scenario (Figure 6). For RCP 4.5 scenario, a 4- to 7-fold increase in heat wave events is projected over India with a maximum of

Figure 4. CORDEX-SA RCM simulated climate impact indices

(A) TXx simulated by CORDEX-SA RCMs after bias correction.

(B) TX95t simulated by CORDEX-SA RCMs after bias correction.
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20 events/year during mid-term future to further 35 events/year for the long-term future. CSIRO-Mk3.6 which performed better among all

models during evaluation in both the ensembles projects the highest frequency of 20 events/year in northwestern, central, and south-central

region. While most of the IITM ensemble models and ensemble mean project an increase of 2–12 events/year, the SMHI ensemble projects a

highermaximumof 15–20 events/year. RE_MPI-ESM-LR also observed the highest frequency of 20 events/year but differed fromothermodels

in the region of maximum frequency which was south-central region only.

The spatial variability shows heat waves to occur all over India with most pronounced in the northern and central region including east

and west Rajasthan, East Madhya Pradesh, West Madhya Pradesh, and Vidarbha. The coastal region which records high mortality due to

presence of humidity and low diurnal temperature range in case of extreme temperature and heat waves exhibits an increase of 4–6

events/year in future which can aggravate the heat stress condition.8 Heat wave events are found to recede from the southern region partic-

ularly south-western coastal region in long-term future as projected by most of the models. However, the frequency of heat wave increased

in rest of the country showing a higher distribution reaching more than 35 events/year as simulated by CSIRO-Mk3.6 and SMHI-IPSL-CM5-

MR. While these two models simulated the maximum frequency, remaining models project an average of 20–25 events/year all over the

country.

For RCP 8.5 scenario that represents a 3-fold higher greenhouse gas emission scenario and so a higher increase in temperature extremes,

heat wave events show a five-to-ten-fold increase in mid-term (2041–2060) to long-term period (2081–2099) over the country (Figure 7). The

increase is consistent in the regions that showed increase in the RCP 4.5 scenario with a varying magnitude. The frequency estimated by the

SMHI ensemble models is higher (25–30 events/year) than that estimated by the IITM ensemble model (15–20 events/year) except for

IITM_CSIRO-Mk3.6 and IITM_MPI-ESM-MR (25 events/year). An increase in heat wave over entire India can be observed with most of the

country under heat wave occurrence in RCP 8.5 scenarios. IITM_CSIRO-Mk3.6, SMHI_CSIRO-Mk3.6, SMHI_GFDL-ESM, SMHI_MIROC, and

SMHI_NorESM1-M, which showedbetter performance for the historical trends, project an increase of around 35–60 events/year with the high-

est frequency in the south-central, northwestern, central, and western region of the country. The southern region can be also seen recording

Figure 5. Evaluation of heat wave characteristics over India

(A) CORDEX SA -RCM simulated frequency of heat wave events over India during MAMJ (1971–2005).

(B) CORDEX SA -RCM simulated intensity of heat wave events over India for Mar–Jun (1971–2005).

(C) CORDEX SA -RCM simulated duration of heat wave events over India for Mar–Jun (1971–2005).
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more events. However, IITM_CanESM2 which simulated heat wave similar in the northwestern and central region for the evaluation period

varies largely from the other models recording 20–30 events/year in those regions, whereas SMHI_IPSL-CM5-MR, SMHI_MPI-ESM-LR, and

RE-MPI-ESM-LR project 50–70 events/year over the country except the northern region. The results for the RCP scenarios show that there

will be a consistent increase in heat wave events over India with south-central region becoming warmer than any other part of the country

followed by Northwestern and Central India making them future heat wave hotspots as well.

The best estimate of average heat wave events frequency and change simulated by all seventeen RCM datasets over India is estimated

through boxplot distribution (Figure 8). For RCP 4.5 mid-term (R4 F1) and long-term (R4 F2) scenario heat wave events may observe a median

increase of 4–6 events whereas for RCP 8.5 mid-term (R8 F1) and long-term (R8 F2) scenario a change (increase) of 6–20 eventsmay occur from

historical period. Average frequency of heat wave events is projected to rise to a median �5 to 7 events and �7 to 20 events in RCP 4.5 and

RCP 8.5 mid-term and long-term future, respectively. Figures S5 and S6 shows the uncertainty in the distribution of historical and future heat

wave intensity and duration over India.

A gradual increase in themedian intensity from around�46�C in historical period to�49�C (RCP 4.5) to�50�C (RCP 8.5) by IITM ensemble

RCMs and �48�C (RCP 4.5) to �49�C (RCP 8.5) by SMHI ensemble RCMs in the long-term future shows a consistent difference of 1�C in me-

dian intensity between ensembles. The IITM models project the higher maximum intensity within the range of �54�C–�59�C while SMHI

ensemble and ensemblemean show lowermaximum intensity of�51�C–�54�C. For duration, all RCMs showed an agreement with the obser-

vation in historical period but showed large inter-ensemble spread in both mid-term and long-term future. Most of the models in both the

ensemble show amedianmaximumduration range of 12–18 days (RCP 4.5) and 13–22 days (RCP 8.5) mid-term future which increases to 15 to

22 days (RCP 4.5) and 30 to 51 day (RCP 8.5) in long-term future. However, some of the models and the ensemble means project a larger

increase with maximum duration of 56 days (IITM_CanESM2) and 67 days (SMHI EC-EARTH) in mid term to 77 days (RE_MPI-ESM-LR) in

long termunder RCP 8.5 scenarios. Similar increase in the intensity and duration in heat wave events over India has beenprojectedbyDubey&

Kumar47 for far future period under RCP 8.5 scenario. However, they recommended the use of ensemble of models for a realistic projection of

heat waves which the present study provides for all three characteristics of heat wave over India.

Figure 6. Future heat wave projections under RCP 4.5 scenarios

(A) CORDEX-SA RCM simulated heat wave events/year during Mar–Jun for mid-term future (2041–2060) under RCP 4.5 scenario.

(B) CORDEX SA -RCM simulated heat wave events/year during Mar–Jun for long-term future (2081–2099) under RCP 4.5 scenario.
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DISCUSSION

Before simulating future projections, model performance evaluation was carried out in simulation of maximum temperature, extremes, and

heat wave events which showed the varied performances of RCMs in comparison to the observation. A cold bias (underestimation) in the

northern hilly region is observed for all RCM simulations, and warm bias was reported in the central and eastern region of the country. Similar

warm and cold bias has been reported by Prajapat et al.42 in evaluating the CORDEX-SA experiments for projecting future spatiotemporal

warming over India.45,48 The warm bias/overestimation over the country particularly in the eastern and some parts of central India as can be

seen in the simulation of climatological mean and climate impact indices (TXx and TX95t) can be attributed to the dry bias in the central region

due to loss of moisture from the atmosphere as well as the positive bias in temperature over the Bay of Bengal region.37,45,48 The underes-

timation in the maximum temperature (cold bias) over the Himalayan region has been reported by several studies CORDEX-SA RCMs as well

as their driving GCMs.28,45,49–52 To explain the cold bias it is observed that the Himalayas exhibit complex topography and dynamic weather

variability and hence are difficult to characterize using either GCMs or RCMs.52,53 Mishra et al.50 reported an underestimation (cold bias) of

10�C–15�C in the northern and northeastern region of India in themulti-model-mean of CMIP5 GCMswhich are also the drivingGCMs for the

CORDEX RCMs, and the underestimation is similar to the underestimation reported in the present study. Sanjay et al.42 observed an under-

estimation of more than 2�C in mean temperature over the Hindu Kush Himalayan region during summer monsoon season by the MME of

CORDEX driving Atmosphere-Ocean coupled General Circulation Models (AOGCMS) but found that CORDEX multi-RCMs provide better

confidence in projecting seasonal warming in the Himalayan region than their driving AOGCMs and so recommended their future applica-

tion. A number studies on the Himalayan region using CORDEX-SA RCMs have acknowledged the limitation of model performance in the

Himalayan region owing to regional topography, systemic biases, wet bias, individual model physics, overestimation, etc.51,51,53–57

Nayak et al.53 and Prajapat et al.42 noted similar significant cold bias in the northern region by RegCM4 simulations and CORDEX-SA ex-

periments, respectively, during summer season. Nengker et al.54 assessed the performance of CORDEX-SA RCMs in simulating mean tem-

perature over Himalayan region and found similar cold bias in the Himalayas but made a note on the capacity of the RCMs to capture the

temperature gradient with topography as the Northwestern Himalayas being at the highest elevation and colder than lower and eastern

Figure 7. Future heat wave projections under RCP 8.5 scenarios

(A) CORDEX-SA RCM simulated heat wave events/year during Mar–Jun for mid-term future (2041–2060) under RCP 8.5 scenario.

(B) CORDEX SA -RCM simulated heat wave events/year during Mar–Jun for long-term future (2081–2099) under RCP 8.5 scenario.
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Himalayas. Nayak et al.53 attributed the cold bias to high water availability and less surface energy computations associated with the param-

eterization schemes used in the models and so pointed out the need to accommodate the associated processes to improve the model per-

formances. Mishra et al.50 concluded that the cold bias is a systemic bias associated with all of themodels and does not depend on resolution

but the parameterization schemes. Kotlarski et al.33 explained the cold bias reported by CNRM RCM simulations over high mountains from

EURO-CORDEX was due to the snow scheme and persistent snow cover. Haslinger et al.58 found that the cold bias can also be attributed to

the wet bias in the models due to overestimation of snow cover, moisture, and evaporation feedbacks in the CORDEX-SA experiment, which

have also been reported to have higher added value over their parent GCMs. Besides, added value of RCMsoverGCMswas reported in some

studies for mean temperature and Indian summer monsoon (ISM) simulations over the Himalayan region.58,59 Jury et al.59 reported added

value in the downscaled simulations CORDEX-SA and CORDEX EA RCMS over their driving GCMs in terms of higher spatial correlation

with the observation in temperature as compared to their drivingGCMS in elevation-dependent warming in the Himalayan region. Simulation

of climate impact indices shows that, whilemodels perform better in reproducing percentile-based thresholds, they differ in terms of extreme

threshold which should be considered when selecting the criteria of heat wave simulation.

Following the bias correction, heat wave events were simulated, and it was found that the models simulated heat wave in the regions of

high frequency as in observation, i.e., northwestern, central, and south-central region. Mandal et al.60 also reported high heat wave occur-

rences in the northwestern, central, and south-central region over India and declared northwestern and south-central region heat wave-prone

regions of the country based on severity. Singh et al.8 also reported the regions showing highest heat wave frequency in the country with

significant increase in the last seven decades. The heat wave trend analysis shows that majority of the models are performing better in the

northwestern and central Indian region followed by the western and south-central region, which records the highest heat wave events in

the country, but fails to capture the decreasing trend in eastern region. The differences in the heat wave trend simulation among the ensemble

members may be attributed to the lateral boundary condition application procedure and physical parameterization of the models. The

uncertainty due to different downscaling RCMs can be seen in heat wave trend shown by CanESM2, CNRM-CM5, CSIRO-Mk3.6, and

GFDL-ESM2M, where SMHI_ RCA4 downscaled RCMs show an overestimation showing HW occurrences in the region where no HW is re-

corded by IITM-RegCM4 downscaled RCMs. Similar trends in both magnitude and spatial variability over India are observed in case of

MPI-ESM-LR downscaled by SMHI_RCA4 and MPI-CSC-REMO2009 with SMHI_MPI-ESM-LR showing some spatial overestimation in the

eastern and south-central region. The failure of models in capturing the decreasing trend in the eastern region may be attributed to an over-

estimation of temperature in the eastern region owing to positive temperature bias over the Bay of Bengal region due to lack of moisture and

dry bias in adjoining areas.45,48,56 The overestimation of temperature leads to high frequency of heat waves in the eastern region of the coun-

try as compared to the observation and so the decline could not be captured. CSIRO-Mk3.6-simulated heat wave events were found to be

closer to the observation from both the ensembles. The downscaled simulations of CSIRO- Mk3.6 in the CORDEX-SA experiment have also

been reported to have higher added value over their parent GCMs. Choudhary et al.38 reported the added value of RCMs in comparison to

the GCMs in simulating ISM and found that RegCM4 downscaled model simulations simulated the ISM better than the parent GCM with the

highest added value reported in the downscaled simulations of the GCM-CSIRO-Mk3-6-0. Considering the added value of the RCMs

observed in simulating the ISM (precipitation) over the Himalayan region, temperature simulations which are affected by the wet bias would

provide this added value in the RCMs. The findings support our study where the downscaled CSIRO-Mk3-6-0 (RCM) simulations were best

among the historical simulations of maximum temperature and heat wave events. Future projection of heat waves was assessed using all

RCM simulations to provide a high-resolution regional climate signal of changing characteristics of heat wave over India under RCP 4.5

and RCP 8.5 scenario emission trajectories and highlight the region which can possibly emerge as future heat wave hotspots. The projection

Figure 8. Boxplot showing future heat wave frequency and change in heat wave events over India from historical to mid-term (2041–2060) and long-

term (2081–2099) future scenario under optimistic and pessimistic scenario shown as His, R4 F1, R4 F2, R8 F1, and R8 F2 in the figure.
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shows that heat waves will continue to increase over the northwestern, central, south-central region, and southern coastal region in both the

scenarios. Heat wave events are found to be extended to the southern region of the country which was not observed in the historical period in

both scenarios.

According to the assumptions of the RCP 4.5 scenario that suggests emissions to peak duringmid-century and further decline in end of the

century, a decrease in the spatial extent of occurrence of heat wave events is observed. But heat wave events show spatial strengthening over

most of the country recording higher frequency in the eastern region of the country as well projecting an increase in magnitude of occurrence

in the RCP 8.5 scenario. This increase is much more pronounced in the RCP 8.5 scenarios than RCP 4.5 scenarios due to increasing temper-

ature as well as increasing area under high temperatures in the RCP 8.5 scenarios. For the long-term future period under RCP 8.5 scenarios,

the spatial patterns clearly indicate the prevalence of heat extremes all over India as simulated by the majority of the models. The variations

among the heat wave projections among the models reflect the uncertainty resulting from three different RCMs used for downscaling and so

present different possible heat wave futures over India. Though the range of uncertainty between the ensembles is more, the spread of the

uncertainty within the ensemble is considerably less in terms of both spatial and temporal frequencies. Among the regions reporting higher

heat waves, the largest increase among the three heat wave-prone regions is projected for the south-central region in future. This increase in

south-central region as projected by the models has also been reported by Dubey et al.61 who found south-central region to observe high

heat wave hazard in future scenarios using REMO-OASIS-MPIOM model over India. While increase in global temperature will escalate heat

wave events over India, modulation in the characteristics phenomenon of natural climate variability, increasing sea surface temperature,

strengthening of mid-tropospheric high, changing land-surface interactions due to changing land use and land cover, reduced soil moisture

and increased sensible heat flux,12 and erraticmonsoon causing delay inmonsoon or absence of pre-monsoon activity would further influence

and exacerbate these rising trends.11,18,22,43,46 The increase in frequency is higher as compared to duration and intensity and so there will be

more frequent heat wave events which will pose extreme risk to health, agriculture, infrastructure, energy demands, and socio-economic is-

sues and loss of productivity in India.

Conclusion

The study analyzes the future changes in the characteristics of heat wave events over India using 17 CORDEX-SA RCM simulations and their

means. It was found that the models observed warm and cold bias in climatological mean simulation which was further removed by applying

the variance scaling bias correction method. While variance scaling corrected model biases and improved the statistical distribution of the

temperature, it was found that the models simulated fixed thresholds (TX95t) better than peak temperature (TXx). Heat wave characteristics

simulation shows all RCMs to capture heat wave occurrence in the heat wave hotspots, i.e., Northern, Northwestern, Central, and South-Cen-

tral India. Among all the RCMs IITM_CSIRO-Mk3.6 and IITM_GFDL-ESM2M, SMHI_CSIRO-Mk3.6, SMHI_IPSL-CM5A-MR, and SMHI_EC-

EARTH capture frequency, intensity, and duration similar to observation making them more reliable models in future heat wave projections.

The average range of heat wave future projections as simulated by the models showed that a four- to seven-fold increase in heat wave events

is projected for mid-term and long-term future under RCP 4.5 scenario spatially for different regions, which may rise to five- to 10-fold under

RCP 8.5 scenario. CSIRO-Mk3.6, the best model, shows the highest increase of 20 events/year to 35 events/year in mid-term and long-term

period under RCP 4.5 scenario and 25 events/year to 60 events/year under RCP 8.5 scenario, whereas the best estimate obtained from an

average of all the models indicates an overall median increase of 4 (mid-term) to 6 events (long-term) under RCP 4.5 scenario and 6 events

(mid-term) to 20 events (long-term) from historical season under RCP 8.5 scenario for India. Northwestern, central, and south-central region of

the country recorded the highest heat wave events in both the future scenarios with largest increase in the south-central region and so the

region may become a future heat wave hotspot. Among the ensembles, it is found that SMHI ensemble member models project a higher

increase in heat wave events as compared to IITM ensemble models and RE_MPI-ESM-LR simulate similar to IITM ensemble members.

Heat wave events are found to become more intense in the future with maximum intensity reaching 54�C–59�C by the end of the century

under RCP 8.5 scenario, and duration is projected to rise up to by 22 days–51 days under RCP 8.5 scenario. Importantly, the rise in frequency

is much larger than the increase in intensity and so in future there would be higher number of heat wave events over India. Also, it brings to the

attention the elevated risk to human health in the future. Along with the three heat wave hotspot regions which face health risk due to rising

frequency of events, the coastal region of Odisha and Andhra Pradesh may be severely affected, where heat waves have been found to be

significantly associated with mortality.8 Any increase in heat wave will only aggravate the health risk causing deadly episodes of mortality over

this heat-vulnerable region. With India becoming the largest population country, heat waves events may have disastrous consequences such

as massmorbidity andmortality in future and also pose a challenge for fulfilling the sustainable development goals. The study concludes that

an unquestionable multi-fold increase in frequency, intensity, and duration in heat wave events awaits over India which will exacerbate the

health hazard, threaten food security, as well as decrease productivity thereby increasing economic burden. Thus, the study recommends

a holistic heat-resilient future pathway through adopting adequatemitigation and adaptation strategies for India prioritizing the regional var-

iations observed in the study for future emerging hotspots that need action at the earliest.

Limitations of the study

The study presents an overall scenario of future change in heat wave characteristics over India and identifies the regions of concerns (hotspots)

in future for India. The findings would aid the policy makers in designing a robust heat preparedness plan for India. However, more insights

could be gained by analyzing the impact of global circulations, land-atmospheric feedback, land use, and land cover change on changing
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heat wave trends over India which were beyond the scope of present study. These are the potential areas of research on heat waves over India

using RCM and so pave way for future heat wave research.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, R. K. Mall (rkmall@bhu.ac.in).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The study analyses existing, publicly available data. All of the CORDEX -SA regional climate model data used in the study is archived at

Earth System Grid Federation data node and is publicly available at https://esgf-data.dkrz.de/search/esgf-dkrz/.

� The IMDdata can be accessed on upon request from https://cdsp.imdpune.gov.in/ and is provided at the repository with the links listed

in the key resources table. All original code has been deposited at GitHub and is publicly available as of the date of publication on

https://github.com/sam0a/Heat_wave_iscience.git.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data

The study aims to evaluate model performance for historical period (1971–2005) and assess the changes in heat wave events over India for

mid-term (2041–2060) and long-term future (2081–2099) period under RCP 4.5 and RCP 8.5 scenarios duringMarch-June when heat waves are

most observed over India. The study area extends over the Indian region 8�40 N to 37�60 N latitude and 68� 70 E to 97�250 E longitude in

CORDEX–SA domain of 19�150 E to 116� 150 E and 15� 450 S to 45� 450 N, as shown in below figure. Daily gridded observed maximum tem-

perature data developed by Srivastava et al.62 at a resolution of 50 km is obtained from India Meteorological Department (IMD) for the his-

torical period 1971–2005 (March-June).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

CORDEX -SA regional climate model dataset Coupled Model Intercomparison Project CORDEX-SA database: https://esgf-data.dkrz.

de/search/esgf-dkrz/

Observed maximum temperature data India Meteorological Department IMD database: https://cdsp.imdpune.gov.in/

https://github.com/sam0a/

Heat_wave_iscience.git

R 4.1.2 The Comprehensive R Archive Network https://cran.r-project.org/

MATLAB 2019b Mathworks https://in.mathworks.com/
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The study uses seventeen dynamically downscaled high resolution maximum temperature projections derived from ten coarse resolution

Atmosphere-Ocean coupled General Circulation Models (AOGCMs) using three different RCMs (IITM-RegCM4, SMHI-RCA4, MPI-CSC-

REMO2009) at 50 km spatial resolution from CORDEX SA experiment.41 The specification of the CORDEX-SA experiments used in the study

are given in below table. The RCMoutputs are obtained from contributing climatemodeling groups archived at Earth SystemGrid Federation

data node (https://esgf-data.dkrz.de/search/esgf-dkrz/). In the paper, the RCM simulations will be referred by the name of the RCM followed

by the GCM for e.g., SMHI_CanESM2. Among all the RCM simulations a consistent data for SMHI_EC-EARTH was not available for long-term

future under both RCP 4.5 and RCP 8.5 scenario and for SMHI_CanESM2 for long term future under RCP 8.5 scenarios.

Map showing topography (inmeters) of the Indian region highlighted by the rectangular boxwithin the CORDEX-SA domain extending over 19�150 E to

116� 150 E and 15� 450 S to 45� 450 N.

Details of CORDEX-SA RCMs used in the study

CORDEX South

Asia RCM RCM Description

Contributing CORDEX

Modeling Center

Driving CMIP5 AOGCM

(see details at https://

verc.enes.org/data/

enes-model-data/

cmip5/resolution) Contributing CMIP5 Modeling Center

IITM-RegCM4

(6 ensemble

members)

The Abdus Salam

International Centre

for Theoretical Physics

(ICTP) Regional

Climatic Model

version 4.4.5

Centre for Climate

Change Research (CCCR),

Indian Institute of Tropical

Meteorology (IITM), India

CanESM2 Canadian Centre for Climate Modelling and

Analysis (CCCma), Canada

GFDL-ESM2M National Oceanic and Atmospheric

Administration (NOAA), Geophysical Fluid

Dynamics Laboratory (GFDL), USA

CNRM-CM5 Centre National de Recherches

Météorologiques (CNRM), France

MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M),

Germany

IPSL-CM5A-LR Institut Pierre-Simon Laplace (IPSL), France

CSIRO-Mk3.6 Commonwealth Scientific and Industrial

Research Organization (CSIRO), Australia

(Continued on next page)
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Bias correction

Bias correction of climate model data reduces the uncertainty associated with climate projections due to systemic error or model physical

parameterization.36,63,64 Understanding and removing the bias involves correction of statistical characteristics of the model data such as

mean, variance, standard deviations, data distributions etc. Based on these principals, studies have used different approaches such as linear

scaling, variance scaling, distribution mapping and delta change method to remove the bias associated with model simulations.64,65 As in-

dividual RCM simulations have inherent biases, application of large ensemble RCM with bias correction is recommended to reduce the un-

certainty in projections due to these biases.27,66 Bias correction methods work on deriving a correction factor based on difference between

model and observed data in the historical period and are stationary assuming that the correction factor remains valid for both present and

future condition.66As there is no future reference/observation data present for validation of bias corrected data, researchers rely on the ability

of methods to correct historical model data with respect to the observation for their application in futuremodel data bias correction. Variance

scaling has been widely used for bias correction of temperature data as it corrects both the mean and variance and produces samemean and

variance after bias correction, narrowing the range of variability between observed and model data.28,67,68 Teutschbein and Seibert,66 re-

viewed and evaluated simple to sophisticated widely employed bias correctionmethod and found that both variance scaling and distribution

mapping methods perform better in fitting the mean and day to day variations in model simulated temperature data, and distribution map-

ping performed best for precipitation time series. In the present study, both historical and future i.e., 38 RCM simulations were bias corrected

using variance scaling method (Equations 1–3).

T�2
contrðdÞ = T �1

contrðdÞ � mm

�
T�1
contr ðdÞ

�
(Equation 1)

T�3
contrðdÞ = T �2

contrðdÞ �
$
smðTobsðdÞÞ
sm

�
T�2
contr ðdÞ

�
%

(Equation 2)

T�
contr ðdÞ = T �3

contrðdÞ+mm

�
T�1
contrðdÞ

�
(Equation 3)

where contr is RCM-simulated 1971–2000, d is daily, obs is observed maximum temperature, s is standard deviation, m is mean, * is final bias

corrected *1,2,3 is intermediated bias corrected model. A detailed explanation of the method can be found in Singh et al.28

Continued

CORDEX South

Asia RCM RCM Description

Contributing CORDEX

Modeling Center

Driving CMIP5 AOGCM

(see details at https://

verc.enes.org/data/

enes-model-data/

cmip5/resolution) Contributing CMIP5 Modeling Center

SMHI-RCA4

(10 ensemble

members)

Rossby Centre

regional atmospheric

model version 4

Rosssy Centre, Swedish

Meteorological and

Hydrological Institute

(SMHI), Sweden

EC-EARTH Irish Centre for High-End Computing (ICHEC),

European Consortium (EC)

MIROC5 Model for Interdisciplinary Research On

Climate (MIROC), Japan Agency for Marine-

Earth Sci. & Tech., Japan

NorESM1-M Norwegian Climate Centre (NCC), Norway

HadGEM2-ES Met Office Hadley Centre for Climate Change

(MOHC), United Kingdom

CanESM2 CCCma, Canada

GFDL-ESM2M NOAA, GFDL, USA

CNRM-CM5 CNRM, France

MPI-ESM-LR MPI-M, Germany

IPSL-CM5A-MR IPSL, France

CSIRO-Mk3.6 CSIRO, Australia

MPI-CSC-

REMO2009

MPI Regional model

2009

Climate Service Center

(CSC), Germany

MPI-ESM-LR MPI-M, Germany
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QUANTIFICATION AND STATISTICAL ANALYSIS

Performance indicators

CORDEX-SA RCMs model performance is evaluated for simulating the observed climatological state such as the climatological mean

maximum temperature, interannual variability, and extremes using a number of climatological and statistical metrics before and after bias

correction (see table below). Tomeasure the degree of overestimation and underestimation of RCM simulatedmeanmaximum temperature,

climatological mean (MEA-T) and mean bias (MB) is estimated over India.33The study uses standard performance metrics i.e., root-mean-

square error (RMSE) and mean absolute error (MAE) to measure relative errors between model and observed, PBIAS to estimate the percent-

age of bias, Wilmot’s index of agreement (d) for determining the degree of agreement between model and observation and Taylor diagram

to estimate the improvement in model simulated temperature dataset after bias correction28,29,68 (see table below).

Since, variance scaling approach produces same long-term mean value after bias correction, we evaluate the model performance and in-

ter-ensemble variations in simulation of daily maximum temperature data before and after bias correction in comparison to the observation

using standard multivariate probability distribution metrics.69 In the study we use Kernel Density Estimation (KDE) and Empirical Cumulative

Distribution Function (ECDF), the two probability density distributions for assessing model performance in simulating daily maximum tem-

perature and capturing intra-annual variability for the historical period Mar-Jun (1971–2005). KDE is a non-parametric robust measure that

gives the empirical estimate of probability density function irrespective of underlying distribution pattern assumption.28,70 Similarly, ECDF

is fitted to both daily model and observed temperature datasets to assess the probabilities of daily temperature values estimated before

and after bias correction.15

Climate impact indices

Apart from these statistical measures, recently developed Expert Team on Sector-Specific Climate Indices (ET-SCI) which have a critical focus

on sector specific responses have been used. In the present study two of the ET-SCI indices i.e., Seasonal maximum value of daily maximum

temperature (TXx) and the 95th percentile of the seasonal maximum temperature referred to as Very Warm Day Threshold (TX95t) that mea-

sures impact on health, agriculture and economy are used for model performance evaluation. The intermodel spread in simulating the Tx95t

Model performance metrics and ET-SCI indices used in the study

Acronym Metrics/Indices Name Definition Formula Unit

MEA-T Climatological mean Climatological mean of maximum temperature
X =

Pn
i = 1Xi

N

�C

MB Mean Bias Difference between model simulated and

observed mean maximum temperature

1

n

Xn

i = 1
ðM � OÞ

�C

TXx Max TX Seasonal maximum value of daily maximum

temperature

TXi = ðmaxÞTXi
�C

TX95t Very warm day threshold Value of 95th percentile of TX TX95t = ð0:95ÞTXk T

RMSE Root mean square error square root of the mean of the square of all of

the error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1ðM � OÞ2

n

s �C

MAE Mean Absolute Error arithmetic average of the absolute values of the

differences between the members of each pair

of observation and predicted values

1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM � Oj

p �C

PBIAS Percent Bias the percentage difference between the

simulations frommodel and observation where

positive values indicate overestimation and

negative values indicate underestimation

PBias =

Pn
i = 1ðOi � MiÞPn

i = 1ðOiÞ
%

D Willmott’s Index of

Agreement

The ratio of the mean square error and the

potential error (pe) multiplied by n (number of

observations) and then subtracted from 1.

d = 1 �
Pn

i = 1ðOi � Mi Þ2Pn
i = 1ðjMi � Oj þ jOi � OjÞ2

-

R2 Correlation Coefficient determines the strength of linear relationship

between two variables. It lies between �1 and

+1; r value equal to +1 indicates perfect and

positive correlation, whereas negative value of

�1 shows negative and perfect correlation.

r =

Pn
= 1ðOi � OÞðMi � MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1ðOi � OÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1ðMi � MÞ2
q �C

M denotes RCM output, O refers to the observed data and k is the number of values in the data.
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and TXx by the model simulations against observed provides a metric to assess the ability of RCMs in simulating extreme temperature over

India (see table in performance indicators).

Heat wave criteria

Heat wave events are identified according the criteria given by IMD. The criteria is based on daily departure of maximum temperature from

climatological normal where the reference period for climatological normal is 1970–2000. According to this criteria heat wave is declared if the

maximum temperature of a station reaches at leastR40�C for Plains,R37�C for coastal and at leastR30�C for Hilly regions. Following criteria

are used to declare heat wave.

i) Heat Wave: when the departure from normal temperature is 4.5�C–6.4�C

or

ii) Heat Wave: When the actual maximum temperature R45�C (for plains only)

To declare HW the above criteria should be met in at least two stations in a Meteorological sub-division for at least two consecutive days

and the HW will be declared on the second day.

The impact of any heat wave event is a function of the three characteristic i.e., frequency, intensity and duration of the event.2 Hence, it is

essential to study and evaluate themodel performance in reproducing the frequency, intensity and duration of heat wave events over India. In

the present study, the frequency of the heat wave events is estimated as the number of heat wave events occurring during each season, in-

tensity is the highest maximum temperature recorded during any event in the season and duration is the number of days in the longest heat

wave event observed during the season for each grid.

To determine any possible long-term increasing or decreasing trend in the occurrence of heat waves, linear trends are estimated. Due to

small sample size in the historical period, Student’s t test at a confidence interval of 90% is used to test the robustness of the heat wave trends

simulated by RCM ensemble models against observed.28,46 Future changes in heat wave simulations are determined by difference between

heat waves for near (2041–2069) and far future (2071–2099) period from the baseline period of 1971–2000.
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