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Abstract 

Hyperspectral Remote Sensing (HRS) data is vital for crop growth monitoring due to availability of contiguous bands. 

This research work provides a new novel crop estimator model given the name “Crop Stage estimator” developed using 

the HRS on an open-source R platform. The generic model structure provides an easy way to test and modify the 

importance of crop parameters namely Leaf Area Index to deduce crop growth stages of winter wheat (Triticum aestivum 

L.) at different crops growth stages –heading, tillering and booting. Further, to know the LAI variations on different 

agriculture sites, the best model was implemented using the AVIRIS-NG (Airborne Visible Near-Infrared Imaging 

Spectrometer - Next Generation) hyperspectral datasets for LAI estimation. The analysis indicates that during tillering 

stage the performance was found best during calibration (r =0.66, RMSE =0.40, and Bias =-0.80) and validation (r =0.98, 

RMSE =0.20, and Bias =0.12) in comparison to the ground measurements. 

Keywords: Crop Stage; LAI, Simulation; Spectroradiometer, Hyperspectral, AVIRIS-NG. 

1. Introduction 

The rapid rise in human populations along with factors like climate change and declining natural 

resources have created pressure on the agricultural sector to ensure food security. In this context, 

crop modelling proves to be a powerful tool having a great potential for expanding crop yield (Mbow 

et al. 2017; Shukla et al. 2019). Crop simulation models are the representation of simplified crop 

production systems consisting of nonlinear mathematical equations and logic to provide a systematic 

analysis of the crop production system (Bouman et al. 1996; Malhi et al. 2020). They are continuous 

dynamic systems that precisely explain yield in terms of various growth processes and the effect of 

environmental factors on each growth process (Aggarwal 2002; Park et al. 2005). The models may 

be simple and describe a single process or they may be composed of more mathematical equations 

which describe the different processes such as photosynthesis, phenology, carbon assimilation and 

partitioning, soil water availability, plant growth and development and response to water or nutrient 

deficiency (Bowen et al. 2002; Anand et al. 2021). Hence, the model integrates the effect of different 

factors on productivity and provides a unique opportunity to supplement and extrapolate the results 

of field trials (Aggarwal 2002; Srivastava et al. 2021). Thus, it’s application extends getting 

information of potential yield, nutrient and water requirement of the crop, management practices for 
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biotic and abiotic stresses, impact due to climate change and and selection of crops and varieties for 

optimum production (Wolday and Hruy 2015; Silva et al. 2021). 

Leaf Area Index or LAI is expressed as the leaf area per unit of the ground surface area in broadleaf 

canopies and for the coniferous canopies is one-half the total needle surface area per unit ground area 

of a plant. It is considered a cardinal indicator of the plant growth rate and hence aids in determining 

various stages of the crop. It also helps in estimating crop water stress and the health of the crop 

(Fang et al. 2019; Yu 2020). To understand the geometry of vegetation canopy and ecological 

processes at global and regional scale leaf area index proved to be an important parameter. LAI also 

plays an important role in the conduction of photosynthesis processes of vegetation (Chapin et al. 

2006). Crop growth dynamics and seasonal evolution of vegetation can be depicted using the LAI 

information. LAI estimation can be done using both destructive and non-destructive techniques. Lab-

based LAI estimation though is precise, yet are not applicable for extensive and large area related 

studies (Tao et al. 2020). Non-destructive measurement using advanced remote sensing data is a 

more cost-effective, reliable and time-saving and comparative assessment with other methods makes 

it more suitable for large-scale and long-term monitoring of LAI with minimum efforts (Tillack et al. 

2014). Since last decades various optical, microwave and LiDAR satellites have been launched for 

global vegetation studies. Among them SPOT, Terra AQUA/MODIS satellites are available for 

studying the vegetation processes and to derive LAI information which, incorporating site-specific 

characteristics of vegetation (Yang et al. 2006). Local variation of vegetation is not captured in 

coarser resolution-based satellites. To know the site-specific characteristics of vegetation, LAI 

estimation is compulsory. Over the past three decades, to retrieve robust, reliable and accurate LAI, 

radiative transfer models were used. (Jacquemoud Stéphane and Baret 1990) has developed 

PROSPECT model to retrieve multidirectional reflectance and diffusion for the specific leaf. The 

combination of the leaf model with the canopy model (PROSAIL) provides reflectance and 

transmittance for the whole canopy. Generated RTM using PROSAIL model further can be used for 

inversion against optical (reflectance) measurements to retrieve LAI. These models require lot of 

optimization and expert computational effort. To overcome this problem various regression-based 

model has been introduced for LAI retrieval. Among them most commonly used indices were found 

to be normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) (Ma et 

al. 2022). Several studies have proven that these indices secured most closed relationships between 

the ground-based LAI and Vegetation Indices (Wang et al. 2005; Qiao et al. 2019; Tan et al. 2020). 

Thus, crop simulation models aid in predicting crop growth and development by employing 

quantitative explanations of eco-physiological processes impacted by various environmental factors 

and crop management practices (Hodson and White 2010). These models can significantly aid in 

understanding climate change impacts and their interactions with varied crops (Revill et al. 2021; 

Yeşilköy and Şaylan 2021). This will thereby provide support in predicting the potential impacts of 

these changes on crop yield (Asseng et al. 2015). Crop modelling has been used primarily as a 

decision-making tool for crop management, but crop modelling, coupled with crop physiology and 

molecular biology, also could be useful in breeding programs (Slafer 2003). Since these models can 

make inferences about real systems, their application in agricultural systems currently represents a 

powerful resource for the evaluation of scenarios, management options and extrapolations of 

experimental results in space and time (Kumar P et al. 2019; Srivastava et al. 2021). They can also 

be used for academic purposes, research assistance, support systems, and management decision 

management as well as strategic planning analysis and management policies (Jones et al. 2003; 

Gupta, Gupta, et al. 2021). 

The use of crop simulation models is dated back to the mid-1960s wherein simple mathematical 

equations were employed to depict crop processes (De Wit et al. 1995). Various models were then 

developed such as ARC-Wheat (Porter 1984), CERES-Wheat (Ritchie 1985) etc. Significant 

advances were achieved in crop modelling in 1990s where models incorporating climate change 
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impacts were built in understanding the projected impact of carbon dioxide concentration 

(Rosenzweig and Parry 1994). Few existing crop modelling platforms are Agricultural Production 

Systems Simulator (APSIM) (Keating et al. 2003), Environmental Policy Integrated Climate (EPIC) 

(Kiniry et al. 1995), Decision Support System for Agrotechnology Transfer (DSSAT) (Jones et al. 

2003), CropSyst (Stöckle et al. 2003), Wageningen crop models and Simulator multidisciplinary 

pour Les Cultures Standards (STICS) (Brisson et al. 1998). Additionally, new methods merging 

single models with crop modelling platforms are also developed. Crop yield simulation using such 

crop simulation models is successfully achieved for different environments, biotic constraints, gene 

factors and climate change impacts and adaptations (Kheir et al. 2020; Maurya et al. 2020; Gupta, 

Singh, et al. 2021). 

According to the previous studies (Kasampalis et al. 2018), crop models have the disadvantage of 

missing spatial information. The incorporation of remote sensing data with crop growth models 

provides a more accurate explanation of the crop’s actual condition and various stages of the 

growing season (Challinor et al. 2009; Lobell and Burke 2010) over a large area. Increasing 

performance and continuous updating of hyperspectral technologies in terms of both spectral and 

spatial provide various studies and applications in vegetation mapping and crop modelling (Castaldi 

et al. 2016). A review was done by (Pascucci et al. 2020) on eleven international research studies, 

they have used different hyperspectral datasets for crop and vegetation modelling. Narrow 

contiguous bands of hyperspectral imaging have great potential for agriculture applications (Ali et al. 

2016; Darvishzadeh et al. 2019; Xie et al. 2021). Therefore, the present work aimed at developing a 

model for crop stage simulation linked to LAI dynamics using hyperspectral data on a freely 

available R platform. This crop stage estimator uses hyperspectral spectroradiometer datasets and R 

interface to create, edit, and run simulations by taking Leaf area index (LAI) and crop stages as input 

parameters. To know the best LAI model performance and variability of LAI value over a larger 

area, mapping of LAI were done through AVIRIS-NG (Airborne Visible Near-Infrared Imaging 

Spectrometer - Next Generation) airborne datasets over test study area of Anand, Gujarat. 

2. Study Area 

Varanasi and Anand districts were selected as case study areas for model development and testing. 

The study was carried out in the agricultural fields of widely grown cereal crop namely wheat. 

Varanasi area is rich in crop productivity as it lies near the Gangetic belts. The sampling was mainly 

executed in the major regions covering more than 800 km
2
 of the area. The average annual rainfall 

recorded in this region is 1056.4 mm per year. Wheat is the major cultivated crop during the rabi 

season and the area covered is 101.972 hectares (Rai; YADAV M et al. 2013). Varanasi district has a 

humid subtropical climate and is characterized by very hot and cold summers seasons. In the summer 

season, the temperature varies from 22°C to 46°C and below 5°C in the winter season. It follows the 

mixed cropping pattern and three cropping seasons (Kharif, Rabi and Zaid). Kharif crops are mainly 

shown between the month of June-July and harvested period is September, while rabi crops are sown 

in October- November and Zaid crops are in between the Rabi and Kharif seasons. Paddy crop 

covers the largest area in the Varanasi district (Kumari M et al. 2017; Nistor et al. 2020). 

The second study site was selected namely Anand (Site Id 68) located in the Gujarat district which 

consists in the western part of India. The present site is part of the AVIRIS-NG India Campaign, 

which is a joint initiative of the Indian Space Research Organization (ISRO) and National 

Aeronautics and Space Administration (NASA). The geographical area covered by the study site is 

22.6109° N - 72.9976°E and 22.5327°N - 73.8812°E, respectively. The study site is mainly covered 

by agricultural field crops like wheat, maize, sorghum etc. Wheat is the main dominating growing 

crop in the study area. Different types of soil such as black cotton, mixed red and black, are 

presented in the study area (Priyan 2015; Tripathy and Manjunath 2016). In the present study phase, 

1 level 2 (Reflectance) AVIRIS-NG data was used for the LAI mapping. 
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3. The Crop stage model 

3.1 Software & Input Requirements 

The software used in the present study is R statistical software which is open-source software and 

can be freely downloaded using the link https://cran.r-project.org/mirrors.html. The mandatory 

package for this interface is the hsdar package which was successfully installed. A rigorous field 

sampling is needed to know the crop stage variations. Basic inputs to this software were multi-date 

hyperspectral reflectance data and ground truth data which were provided in CSV format. The step 

by step creation and development of this estimator has been described in Figure 2. 

3.2 Ground truth data 

The ground truth LAI was measured using LI-2200C Plant Canopy Analyzer (LI–COR®, Lincoln, 

NE, USA) instrument. It computes LAI from above and below the canopy, which is used to control 

canopy light interception at five angles using fisheyes which, provided in the sensor. This instrument 

is mostly known as the world standard instrument to measure LAI for every type of crop and 

canopies (Lena et al. 2016). Because of the most reliable and accurate measurement, this analyser 

has been used in many studies (Kanzler et al. 2019; Kandert et al. 2021; Yadav VP et al. 2021; 

Verma et al. 2022). In the present study, LAI was captured at different stages of wheat crop namely 

Tillering, Booting and Heading. Wheat crop stages were defined according to the study of Simmons 

(Simmons et al. 1985). Wheat crops at different growth stages in Varanasi agricultural fields are 

illustrated in Figure 1 (a-c). The sampling was done during the Rabi season from mid-November 

2019 to February 2020. Sampling was begun after 10 days of crop sowing, initial tillering to heading 

stage. 

3.3 Hyperspectral Remote Sensing data 

The Analytical spectral devices (ASD) FieldSpec4 spectroradiometer was used to capture reflectance 

data for the wheat crop at its tillering, booting and heading stages. It uses a fore-optic system to 

measure spectral reflectance and spectral radiance of any object and distribute it via a fibre optic 

bundle to a fixed diffraction grating spectrometer (Singh, Pandey, et al. 2020a). It has three different 

types of detectors to enable the recording of the spectra (Pandey et al. 2021). A silicon-photodiode-

array for the visible near-infrared (350-1000 nm) region and thermoelectrically cooled InGaAs-

photodiodes (Indium, Gallium, Arsenid) for each first short-wave infrared (1000-1800 nm) and 

second short wave infrared (1800-2500 nm). Hence, it stores band information ranging from 350-

2500 nm. Spectral reflectance is the part or a fraction of incident electromagnetic (em) radiation that 

is reflected from any interface (Singh, Srivastava, et al. 2020a). The reflectance, when plotted as a 

function of wavelength, is known as the reflectance spectrum or spectral reflectance curve which is 

the end product of the device (Mac Arthur et al. 2012; Singh, Pandey, et al. 2020b; Srivastava et al. 

2020). The spectral resolution varies from 3 nm in the very short wavelength regions and 10 nm in 

the farther regions of wavelengths. This ASD FieldSpec4 spectroradiometer records spectral 

information of 2151 bands (Janse et al. 2018; Singh, Pandey, et al. 2020b; Pandey et al. 2021). 

Another hyperspectral data acquired from the airborne AVIRIS-NG flight over the study site Anand 

Gujarat was also used for LAI mapping. The necessary data was collected under the phase-1 

campaign of AVIRIS-NG over the area of Anand, Gujrat site on 7th January 2016. An imaging 

spectrometer AVIRIS-NG consists of 425 narrow contiguous spectral bands range varies between 

380-2510 nm at 5 nm spectral resolution with ground sampling distance from 4 to 8 m and flying 

altitude of 4-8 km (Singh, Srivastava, et al. 2020a). Availability of a large amount of spectral 

information, AVIRIS-NG data proves as a useful dataset for the land-cover distinction and 
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vegetation biophysical modelling (Bue et al. 2015). Ortho-rectified and atmospheric corrected 

reflectance L2 (Level 2) data was used for the LAI mapping. Detailed information can be seen in 

Table 1. 

3.4 Crop Stage Estimator 

The research focuses on the development of a user-friendly environment where various types of 

hyperspectral analysis can be performed just by providing input data. In order to handle 

hyperspectral data, users need a large volume of space, high performing computer with good 

knowledge of programming languages to analyse hyperspectral measurements. Development of this 

model on freely available R software and a complete environment for processing provides a better 

solution for non-programming users to handle hyperspectral data. This environment is applicable for 

agricultural region and for wheat crop to estimate LAI information. 

Crop Stage Estimator is a novel model in the field of crop modelling and it possesses certain salient 

features that are essentially required for fast processing of the datasets can be intgertaed with other 

systems. This model is easy to implement and also provides step by step user-friendly process to 

know the crop stages linked to the LAI using hyperspectral data on a freely available R platform. It 

comprises various functions which can be used to create, edit, and run simulations by taking Leaf 

area index (LAI), crop stages and hyperspectral data as input parameters and finally analysing 

outputs from R. The flow chart depicting the present study can be seen in Figure 2. The 

performances of Crop Stage Estimator was tested by running this model using developed example 

flow for Varanasi wheat crop. Set example workflow was used with Leaf Area Index (LAI) and 

Analytical Spectral Devices (ASD) FieldSpec 4 Hi-Res Spectroradiometer hyperspectral reflectance 

data collected for wheat (Triticum aestivum L.) crop at different growth stages (heading, tillering and 

booting) growing in the agricultural fields of Varanasi. Workflow provides the code that can be used 

for modifying values in input data files, running simulations, reading simulated output, and creating 

publication-quality visualizations of observed and simulated data. Results of this performance check 

demonstrated that how the crop stage estimator can be used to perform various crop stage analyses 

and processing in a single platform. It further demonstrated the validation of the crop model for 

developing crop stage variation between ground and modelled crop parameters using a crop stage 

estimator. 

A simulation model developed in the present study is given the name “Crop Stage Estimator”. This 

model runs under the R environment. It provides a user-friendly interface to analyze hyperspectral 

data. Various steps involved for development and running this model under R environment includes 

(1) Input of multidate hyperspectral reflectance data captured by ASD-Spectroradiometer instrument 

in CSV (comma-separated values) format according to wheat crop stages such as Tillering, Heading 

and Booting (2) In the next step, to understand the difference between crop stages, crop stage-wise 

generation of the spectral profile has been created by using the hyperspectral data (3) Provided input 

data was further used for the development of vegetation indices at different crop growth stages using 

vegindex function of hsdar package in R (Lehnert et al. 2018) which aids in calculating all available 

vegetation indices as well as user-defined indices can be developed after providing the customised 

formula (4) In next step, identification and selection of optimum LAI model based on the best 

correlation values between modelled and ground- based parameter can be generated (5) In order to 

know the model robustness, statistical performance has been performed between best LAI modelled 

values and ground-based validation data. (6) Linear plot development to understand the stage-wise 

crop growth variations (7) Finally, the LAI mapping using the best LAI model has been performed 

by using the AVIRIS-NG data. 

3.5 Validation and Accuracy assessment 
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To know the model efficiency and robustness, validation was done on both study areas namely, 

Varanasi and Anand Gujarat. Data was portioned into two categories. From the total collected 

ground data, 70% were used for model calibration and 30% for model validation. A Scatter plot was 

plotted to check the performance of the model by comparing statistical parameters viz. Bias, RMSE 

and correlation between Ground LAI and simulated LAI. 

The correlation coefficient (r) calculated using this equation 
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where   and y are the ground-based and estimated measurements respectively, whereas n is the total 

number of observations. 

RMSE (Root Mean Square Error) calculated using this equation 
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The absolute Bias is calculated to understand the positive or negative deviation from the actual 

values. Bias calculated using the following equation; 

     ( ̅   ̅) (9) 

where  ̅ is the mean of ground-based measurements and  ̅ is the mean of estimated measurement 

(Singh et al. 2021). The layout of the example workflow is shown in Figure 3. 

4. Results and Discussions 

4.1 Results 

4.1.1. LAI dynamics with different crop stages 

Properly quantification of LAI is very difficult, concerning ecological, varietal factors and temporal 

variability. Various methods have been established for the estimation of LAI and also yielded good 

results, but due to the unavailability of large time-series parameters proper coefficients are not 

developed for LAI monitoring (Bin et al. 2010). In the present study, crop estimator was developed 

for the retrieval of LAI and also to obtain crop growth stages through hyperspectral 

spectroradiometer reflectance data and ground truth crop parameter viz. LAI data for the wheat crop 

at different growth stages such as Tillering, Booting and Heading. 

Variations in LAI values at different stages of wheat crop grown in Varanasi were observed and 

shown in Figure 4. To understand the overall distribution of the datasets and the box and whisker 

diagrams were generated. These box and whisker diagrams represent the distribution of data in terms 

of maximum, minimum, median, and both the upper and lower quartile in a single plot. Minimum 

and maximum LAI values for Tillering stage were observed as 0.12 and 0.71 respectively whereas 

for the booting stage of wheat it was found as 1.25 and 1.81 respectively. For the Heading stage of 

the wheat crop minimum and maximum LAI values noted were 2.21 and 3.93 respectively. LAI 
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varies with seasonal changes according to plant activity and highest LAI found in dense canopies and 

lowest in early-stage or leaves senescence maturity stage (Maass et al. 1995; Bedigian and evolution 

2003). 

4.1.2. Spectral response with changing canopy conditions 

Stage wise spectral library for wheat crop growing in Varanasi is depicted in Figure 5. It has spectral 

variability at various stages that can be used for crop stage discrimination. The highest peak in 

reflectance was observed in NIR (Near -Infrared) region during Tillering, which was noted as 75%. 

Minimum reflectance value i.e. 58% was observed for the Heading stage of the wheat crop. Spectral 

variations among curves are mainly occurred due to spectral differences in crop growth stages. The 

lowest reflectance values were observed in the tillering stage because reflectance values are mainly 

influenced by soil and low biomass. Maximum reflectance in jointing or heading stage due to highest 

values of green leaf area index and high scattering of solar radiation in NIR (Moreira et al. 1999). 

Further, these reflectance values were used as the inputs for the calculation of vegetation indices. 

4.1.3. Assessment of indices and LAI generated from Crop stage estimator 

All available more than hundred already developed hyperspectral vegetation indices were calculated 

for wheat crop growing at different stages. Correlations between calculated indices and ground LAI 

data for different stages of wheat were established and five best-correlated indices for each stage 

were determined and shown in the scatterplot Figure 6 (a-c). The five best indices identified for 

tillering stage are NDVI (Normalized difference vegetation index), PARS (Ratio Analysis of 

Reflectance Spectra), PSSR (Pigment Specific Simple Ratio), SRPI (Simple ratio Pigment Index) 

and GDVI (Generalized Difference vegetation Index). NDVI was identified as the best among the 

five indices which showed the greatest correlation with LAI at tillering stage (r = 0.66). For the 

booting stage, five top correlated indices are NDVI, GDVI, MSAVI (Modified Soil-Adjusted 

Vegetation Index), OSAVI (Optimized Soil-Adjusted Vegetation Index) and SR (Simple ratio). Even 

at the booting stage, NDVI was observed to be the best-correlated vegetation index with LAI with an 

r-value of 0.59. The top five best indices are GDVI, NDVI, MSAVI, OSAVI and SR. Among them, 

mNDVI (Modified Normalized difference vegetation index) was found to be the best-correlated 

vegetation index to LAI at the heading stage (r = 0.57). 

The LAI models established using best relations between LAI and vegetation index at respective 

stages were further used for estimating LAI. The best LAI model for tillering, booting and heading 

stage were displayed using multiple linear regression plots. Among them, vegetation indices at 

tillering stage showed a highly significant relation between ground LAI and vegetation index. Figure 

7. Line diagram was plotted to observe variations in ground and modelled LAI at different stages. 

The dotted red line corresponds to the model predictions, while the dotted blue line corresponds to 

the ground truth variation. The same increasing pattern was observed from tillering to heading stage 

for both grounds and modelled LAI. According to the linear plot, it is visible ground and modelled 

LAI observed a close relationship for all growth stages Figure 8. Among all stages tillering stage 

model was found to be the best optimum model for LAI retrieval. Using best optimum model 

validation was performed which, showed a highly significant relation between ground and modelled 

LAI with r = 0.98, RMSE = 0.20, and Bias = 0.12 (Figure 9). 

4.1.4. LAI mapping 

According to the overall results of hyperspectral vegetation indices, NDVI indices-based model at 

the tillering stage was proved to be the best optimum model for generation of LAI values. Further, 

this best model was used as an input for generating LAI map using the AVIRIS-NG airborne dataset 
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of Anand, Gujrat. Raw rectified phase -1, level 2 image and LAI map of AVIRIS-NG can be seen in 

Figure 10. Zoomed area of both scenes also can be seen on the right side of the images. The range of 

LAI was varying among 0.78 – 0.89. LAI values were observed similar to the range of LAI values 

which was estimated at sampling study sites of Varanasi at tillering stage. This shows that the model 

is quite effective and the further outcome can be used for other agricultural areas and crop growth, 

monitoring and assessment. 

4.2. Discussions 

Previous studies examined the variations in wheat crop stages, which highlighted an increasing 

pattern in LAI for initial crop development stages for mid-season and decreasing LAI trend for a 

late-season (maturity stage) (Kumar V et al. 2013). Another research determining stage-wise LAI 

variation is available wherein an increasing trend in LAI was observed due to the increased number 

of tillers (stages) and size of successive leaves (Rahman et al. 2014). (Kumari P et al. 2009) 

performed field experiment at Ranchi, Jharkhand to understand the response of the wheat crop. In 

their study, experiment was done according to phenological stages of crop such as emergence, 

tillering, jointing, booting, flowering, milking and maturity. An increasing trend in LAI was 

observed till the flowering stage and decreasing patterns were observed for milking and maturity 

stages. The observed output of the LAI variation in the present study corresponds with the previous 

studies since it follows the same LAI pattern at different crop stages. Various studies have been 

conducted to develop crop growth models for the estimation of the most influential, variable of crop 

growth named Leaf Area Index (Daughtry et al. 1992; Jacquemoud S et al. 1996; Fassnacht et al. 

1997). Among them, a study was conducted by (Yuan et al. 2017) Jiaxiang County for the 

investigation of an optimal model for soybean crop for all growth periods using simple random 

sampling and stratified type sampling methods. 

Several machine learning such as random forest, artificial neural network and support vector 

machine regression models were compared with a partial least-squares regression (PLS) model for 

the estimation of LAI (Goel 1988; Verhoef 1998). Among them, ANN model yielded the highest 

accuracy with R
2
 0.452 and RMSE 0.106 respectively (Li X et al. 2014). Another study was 

conducted at Greenbelt Farm of Agriculture and Agri-Food Canada for LAI estimation. PROSPECT 

and SAILH radiative transfer models were used to simulate the range of canopy reflectance and 

understand the variations of LAI for the wheat crop (Haboudane et al. 2008). To estimate the leaf 

area index (LAI) several existing vegetation indices, such as Normalized Difference Vegetation 

Index (NDVI), Renormalized Difference Vegetation Index (RDVI), Modified Simple Ratio (MSR), 

Soil-Adjusted Vegetation Index (SAVI), Soil and Atmospherically Resistant Vegetation Index 

(SAARVI) and modified triangular vegetation index (MTVI) were used (Li F et al. 2014). Among 

them, MTVI proved to be the best predictor of green LAI. MTVI index showed a significant relation 

with the ground LAI and observed performance values in terms of R
2
 and RMSE (0.54, 0.85) for 

wheat crop respectively (Haboudane et al. 2004). According to the performance analysis of previous 

studies, the current study outperforms and thus the estimator developed through this study can be 

used for LAI mapping. 

6. Conclusion 

In this study, a hyperspectral-based crop stage estimator interface has been developed on freely 

available R software. To analyze the performance, an example workflow was created for wheat at 

different crop growth stages. The presented interface can perform simple steps which makes it robust 

and user friendly. It also has quick processability of larger datasets. This interface will provide a 

common platform for the generation of the spectral library, calculation of vegetation indices, 

development of best LAI model and its mapping. This common platform will be also helpful for non-
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programming users due to simple layout and working. This novel model extends the basic tools 

which on combining with other R packages will facilitate developing robust, reproducible, scientific 

modelling workflows. Further crop stage estimator can be used to understand crop stage variations 

by integrating other crops biophysical (Biomass, Plant height, Root depth) and biochemical 

(Chlorophyll) parameters. 
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Figure 1. (a-c) Different stages wheat crop over agriculture field of Varanasi 
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Figure 2. Flow diagram crop stage simulation model 
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Figure 3. Example workflow of Crop Stage Simulator 
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Figure 4. Stage wise LAI distribution 
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Figure 5. Spectral Library of the wheat crop at different stages over agriculture field of 

Varanasi 
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Figure 6. (a-c) Correlation matrix plot of best 5 LAI based indices at different stages of wheat crop 

(a) tillering stage (b) booting stage (c) heading stage 
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Figure 7: Best LAI model for different stages of wheat crop 
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Figure 8: Variations of LAI at different stages of wheat crop 
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Figure 9: Performance of LAI for whole period 
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Figure 10: AVIRIS-NG RGB composite and LAI map using LAI best model 
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Table 1. Specification of AVIRIS-NG (Singh, Srivastava, et al. 2020b; Ahmad et al. 2021) 

Parameters  Specifications 

Wavelength Range  380 nm to 2510 nm 

Spectral Resolution (FWHM, minimum)  5 nm ± 0.5 nm 

Field of View (FOV)  36°± 2° 

Instantaneous Field of View (IFOV) 1.0 milliradian 

 Ground Sampling distance (GSD)  4 to 8 m 

Radiometric Resolution  14 bits 

Maximum Altitude 18 km 

Acquisition date  7
th

 January 2016 
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