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Abstract

Droughts inflict significant loss on agricultural economies. Gomati River basin,

the area of the present study, is located within the Ganga River floodplains,

which approximately coincide with the north central temperature homoge-

neous region (NCTHR) of India. Gomati basin is a non-perennial one

supporting water intensive agricultural crops. To ascertain the occurrence of

droughts (if any) from 1986 to 2015 within Gomati River basin, in terms of

inter-dependencies of drought causing variables through study of multivariate

drought indices, is the main objective of the present study. Soil Water Assess-

ment Tool (SWAT) was used in combination with the Copula approach to con-

struct multivariate standardized drought indices (MSDIs) for drought onset

detection through simulation in the face of data scarcity. Although MSDI

based assessment of the basin as a whole did not detect any droughts, in the

upper basin, MSDIs indicated the possibilities of impending agricultural

droughts marked by their consistent variability around near-normal condi-

tions. This methodology can be used to detect drought situations in data scarce

non-perennial river basins within the Ganga River floodplains including the

NCTHR of India.
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1 | INTRODUCTION

The impact and assessment of drought are well documented
for the Indian sub-continent (Das et al., 2016; Gautam &
Bana, 2014; Mall et al., 2006; Pandey et al., 2021; Spinoni
et al., 2019; Zhang et al., 2017). Droughts are studied with
the help of various indices, and there are a number of

indices already in use to detect, analyse and assess different
types of droughts (Dash et al., 2019; Li et al., 2015; Mishra
et al., 2014; Oertel et al., 2018).

The 2002, 2006, 2008, 2011 drought incidences that the
Northern India had faced are combined outcomes of defi-
cient or delayed summer monsoons along with decreased
surface and ground water storages (Goldin, 2016; Pervez &
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Henebry, 2015; Zhang et al., 2017). Decrease in the surface
and ground water storages is mainly due to the massive
withdrawal of water for intensive irrigation of the agricul-
tural fields (Dey et al., 2021; Mall, 2013). About 90% of the
total crop production of the country consists of cultivation
of rice, wheat and sugarcane, which are water intensive
crops (Bhatt et al., 2019; Dhawan, 2017; Mall et al., 2018).
With the rising population, the demand for food too has
increased, and so has the demand for water in irrigation to
grow it (Dhawan, 2017; Goldin, 2016). Recent studies (Ge
et al., 2016; Singh et al., 2016) covering Northern India to
assess drought frequencies noticed that the type of crop
cultivation plays a significant role in deciding drought
severity, intensity and duration. The Gomati basin located
within the floodplains of the river Ganga falls within the
north central temperature homogenous region (NCTHR)
of India. Rice, wheat and sugarcane, the dominant crops
within the basin like that in the rest of the Ganga plains,
are mostly irrigated either by ground water or by both gro-
und water and surface water (including canals/rivers;
Sharma et al., 2018).

There are several drought indices to facilitate analysis
and assessment of different drought conditions. Sometimes,
it is a single drought index that fulfils the need for drought
assessment and analysis, but sometimes, application of a
group of indices is preferred for a better assessment. Prefer-
ences depend up on the type of drought to be studied, ease of
application, limitations, advantages and resolution of input
data available for the region under study. The standardized
precipitation index (SPI), standardized precipitation evapo-
transpiration index (SPEI), rainfall anomaly index (RAI)
and Palmer drought severity index (PDSI) are most often
used in meteorological drought studies (WMO, 2016). Arid-
ity index (AI), percent departure from normal (PDN), effec-
tive drought index (EDI) and reconnaissance drought index
(RDI) as well as SSI and SSMI are commonly used in agricul-
tural drought assessment (Aadhar & Mishra, 2017; Oertel
et al., 2018). Generally, the hydrological drought studies are
carried out using indices like the standardized stream flow
index (SSI), standardized run-off index (SRI), standardized
flow index (SFI), soil moisture stress index (SSI) and stan-
dardized soil moisture index (SSMI; WMO, 2016). Neverthe-
less, even SPI, SPEI, SSMI and SSI are also used quite often
to understand hydrological responses to drought in river
basins. However, indices listed above, which are univariate
based mostly on single parameters, fail to address the multi-
variate nature of drought phenomenon. Weng et al. (2015)
pointed out that estimation of SPI is based on the assump-
tion that the entire region under drought assessment could
be characterized by same precipitation frequency, which is
not always the reality. Also, in the case of hydrological indi-
ces like that of hydrological drought severity index (HDSI),
run-off is the main parameter based upon which the

calculations are made and the low resolution of run-off data
renders the index somewhat ineffective. Similarly, RAI, SSI,
SRI, SSMI and so forth, individually lack capabilities to eval-
uate complex multidimensional phenomenon that any
drought is due to, because of their single parameter based
construct (Chen et al., 2020).

The Gomati River system has been the focus of water
quality investigations during the last two decades (Bhatt
et al., 2020). The dimension of hydrology has only
recently been considered for research, especially in terms
of basin's response to variability in climate (Abeysingha
et al., 2015; 2017, 2018; Mali et al., 2015, 2017, 2018;
Singh et al., 2013). The Gomati basin was identified as a
drier one in general, showing greater dryness in its lower
parts in particular (Abeysingha et al., 2015).

Normally, drought assessment is carried out usingmete-
orological data like precipitation and temperature and
hydrological parameters like run-off and evapotranspiration.
In the face of data scarcity, several researchers have made
attempts to simulate to get the necessary data sets related to
hydrology and agriculture, for example, run-off, evapotrans-
piration and crop water requirement (Abeysingha et al.,
2015; 2017, 2018; Mali et al., 2015, 2017, 2018). In the present
study also, the authors have depended upon simulation aid
of SWAT model to get the necessary long-term, continuous
basin-wide datasets (otherwise unavailable directly) required
to finally work out on the onset of drought, its variability and
persistence.

The present study proceeds with the understanding
that whatever be the type of drought – meteorological,
agricultural and hydrological –what matters is the agricul-
tural responses within the basin reflecting dry or drought
conditions and situations as the entire basin area is exclu-
sively within the floodplain, which is intensively used for
agricultural purpose. So, the present study is basically an
attempt to understand agricultural responses under vari-
ous drought categories. It also tries to explore as to why, of
which type and to how much extent the hydrological
responses/changes within the basin induce or indicate
agricultural drought conditions. The study starts with the
estimation of dry conditions in terms of changes in the
meteorological, hydrological and agricultural variables of
the Gomati River Basin. The study also tries to figure out
how various parameters interact with each other to build
dry conditions and to see whether such conditions lead to
(agricultural) drought events with the help of multivariate
drought assessment, which has not been attempted yet.

2 | STUDY SITE

Gomati River is non-perennial ‘floodplain’ tributary of
the Ganga River with no melt-water contribution from
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glaciers of the Himalayas. The Gomati basin drains an
area of about 30,997 km2 spread in 18 districts of Uttar
Pradesh and it joins the Ganga River at village Kaithi in
Jaunpur district (Figure 1). The basin lies between the
latitudes 25�23012.6200 N and 28�46058.7500 N and longi-
tudes 79�57033.7600 E and 83�11013.2500 E. The basin is
marked by a relief of 170 m with minimum elevation of
57 m and a maximum elevation of 227 m. The river is
characterized by interrupted flow regime in the lean
period (March–June), with its bed turning into pools. In
the upper reaches, for about the first 60 km, the river bed
remains semi-dry during the lean period and gets
encroached by agricultural activities temporarily (Dutta
et al., 2011). Semi-arid to sub-humid tropical climate of
the basin is characterized by annual rainfall of 850–
1100 mm. The mean temperature ranges between 5�C
(minimum) in winter and 45�C (maximum) in summer
(Abeysingha et al., 2014; Mishra et al., 2013). The basin
falls within north central temperature homogeneous
region (Kothawale & Kumar, 2005). Rice, wheat, sugar-
cane, maize, pearl millet, gram (both red and black), len-
til (masoor), pigeon pea, barley, mustard and potato are
major crops cultivated in the basin.

3 | DATA AND METHODS

3.1 | Datasets

The present study used different types of datasets like
those related to topographical, meteorological, river dis-
charge, and so forth. Sources and necessary details of
each of the dataset are described in Table 1. Various

methods were adopted to carry out analysis in multiple
stages, and the methods have been discussed in detail
below.

3.2 | Trend analysis

Daily gridded India Meteorological Department (IMD)
datasets of temperature (0.5 � 0.5 degrees) and rainfall
(0.25 � 0.25 degrees) from 1983 to 2015 were analysed to
identify the trend in the climate variables with the help
of Mann–Kendall (MK) time series trend test. The Mann–
Kendall time series trend test has been extensively used
by many researchers (Gocic & Trajkovic, 2014; Hamed &
Rao, 1998; Patakamuri & O'Brien, 2019; Pingale
et al., 2016; Taxak et al., 2014). Also, Sen's slope estima-
tion was conducted, which is a non-parametric procedure
to measure the slope of trend in the time series
(Rawshan & Abubaker, 2019; Sen, 1968). The detailed
procedure of the mentioned MK test is explained in
Section S1.

3.3 | SWAT model

SWAT is one of the most used hydrological models
applied to investigate a wide range of hydrological prob-
lems (e.g., agricultural water use, water quality and cli-
mate change impact on water resources) due to its
comprehensive simulation capabilities at different water-
shed scales and in data scarce conditions (Arnold
et al., 2012; Gassman et al., 2007; Gayathri et al., 2015;
Glavan & Pintar, 2012; Guug et al., 2020; Rehbeh et al.,

FIGURE 1 Location map of the

Gomati basin with sub-basins

numbered 1–8
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2011). It has also been used in drought assessment
around the globe (Dash et al., 2019; Liang et al., 2021;
Nyeko, 2015).

SWAT model functions on the principles of hydrolog-
ical mass balance (Equation 1):

SWt ¼ SW0 þ
Xt

i¼1
Rday �Qsurf �Ea �W seep �Qgw

� �
,

ð1Þ

where SWt = final soil water content at time period
t (mm); SW0 = initial soil water content (mm); t = time
(no. of days); Rday= the amount of precipitation on ith day
(mm); Qsurf = the amount of surface run-off on ith day
(mm); Ea = amount of evapotranspiration on ith day
(mm); Wseep = amount of water from the soil profile con-
tributing to ground water recharge on ith day (mm); Qgw

= amount of return flow on ith day (mm; Arnold
et al., 2012; Karlsson et al., 2016; Meaurio et al., 2015;

Suryavanshi et al., 2017). In order to simulate long-term
time series of run-off and soil moisture SWAT model was
set up for the Gomati basin. A 3-year period was consid-
ered for model warm-up. Based on inputs, SWAT model
delineated the entire basin into 269 hydrological response
units (HRUs) and 8 sub-basins. For calibration, Central
Water Jaunpur gauging site of Commission (CWC), Gov-
ernment of India was selected. The model was calibrated
on a monthly time scale with the help of monthly dis-
charge data from January 1998 to December 2005. While
calibrating a set of 22 parameters (related to elevation, soil,
ground water, run-off, and so forth, which were also con-
sidered during pre-calibration) were used for further opti-
mization (discussed below in Section 3.3.1 SWAT model
verification). To reduce the uncertainties in the simulated
run-off, uncertainty analysis was also conducted with the
help of the Sequential Uncertainty Fitting (SUFI-2) mod-
ule provided in the SWAT-Calibration and Uncertainty
Programs (SWAT-CUP) software (Abbaspour, 2008). The
monthly model validation was done with monthly dis-
charge data from 1991 to 1997 (Jaunpur gauging site).

3.3.1 | Model verification – SWAT model
sensitivity, calibration and validation with
SWAT-CUP SUFI2

A hybrid (both manual and auto-calibration) scheme of
model calibration has been followed in the present study.
Selection of 22 parameters was made while undertaking
the manual calibration. Parameter selection was further
refined through auto-calibration. The SUFI2 algorithm of
the SWAT-CUP software was selected to auto-calibrate
the model. As for the objective function, Nash–Sutcliffe
efficiency (NSE) was selected and optimized using the
observed discharge data to ensure the best possible
simulations.

SUFI2 assessed sensitivities of various parameters,
minimized uncertainties and maximized the objective
function via consistent increment of number of iterations
every time setting new ranges for each of the parameters.
It can be observed from Table 2 that finally 15 out of the
22 parameters are found to be sensitive. The slope param-
eter, average slope steepness (HRU_SLP) and the soil
conservation service (SCS) curve number (CN2) were
found to be the most sensitive parameters in simulating
the rainfall–run-off response of the basin. Elevation dif-
ference in the basin being very modest, it was important
to consider HRU_SLP, which imparted the main channel
a characteristic sluggish flow (Figure 2). The CN2 value
has been assigned as per the land use type and a 5%
reduction from the default CN2 values of the
pre-calibrated model has been considered for the

TABLE 1 Datasets used and related details

Data layer Data description
Primary data
sources

Topographic 90 m digital elevation
model (DEM) data
used to characterize
slopes and slope
lengths

Shuttle Radar
Topography
Mission (SRTM):
http://gisserver.
civil.iitd.ac.in/
grbmp/
downloaddataset.
aspx

Land use Prepared through
supervised
classification

USGS LANDSAT
8-L1 Satellite
datasets

Soil
map/layer
data

Resolution of the
datasets is
1:5,000,000 scale

Soil dataset of the
GeoNetwork, Food
and Agriculture
Organisation
(http://www.fao.
org/land-water/
databases-and-
software/
geonetwork/en/

Daily
climate

Daily precipitation
and maximum and
minimum
temperature time
series from 1983 to
2015

IMD, New Delhi

Discharge
data

Monthly discharge
data from January
1998 to December
2005 of the Jaunpur
gauging site

Central Water
Commission
(CWC),
Government of
India
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parameter adjustment procedure. The value of 84 of cali-
brated CN2 indicated that the basin has characteristics of
medium to high potential of run-off generation as perme-
ability factor goes down with increased CN2 (Gao et al.,
2018). The reason behind assigning high CN2 value was
to increase and calibrate the simulated baseflow and run-
off viz-a-viz observed baseflow and run-off. The third
most sensitive parameter was GW_REVAP, which is a
ground water parameter. GW_REVAP is a dimensionless
coefficient that controls the rate of water movement
between the shallow aquifer and the root zone in unsatu-
rated layers; it is a function of demand of water needed
for evapotranspiration (Heuvelmans et al., 2004;

Marhaento et al., 2017). This (GW_REVAP) also makes
the model sensitive to conditions of baseflow generation
(Heuvelmans et al., 2004). Although soil evaporation
compensation factor (ESCO) is at the eleventh position
among the sensitive parameters, it also needs a special
mention. It has been taken care of during manual cali-
bration process itself and then revisited during auto-
calibration process too. ESCO is very important as the
basin of study suffers very high evaporative losses rang-
ing between 1260 and 2000 mm from its vast irrigated
agricultural fields (Figures 1 and 2; Zheng et al., 2018).
The reasons that could be held responsible for such high
evaporative losses are water intensive cropping pattern,

TABLE 2 Model parameterization and sensitivity ranks for the calibrated model

Rank Parameter name Fitted value Min. value Max. value t-stat p value

1 HRU_SLP.hru 0.00925 0 0.05 �13.726 0.000

2 CN2.mgt 84 35 85 7.534 0.000

3 GW_REVAP.gw 0.0677 0.02 0.08 �2.248 0.027

4 SOL_AWC.sol 0.7175 0.5 1 �1.396 0.166

5 DEEPST.gw 1990 1000 3000 �1.179 0.242

6 ALPHA_BF.gw 0.02825 0 0.05 1.103 0.273

7 REVAPMN.gw 267.5 200.5 400.5 1.083 0.282

8 OV_N.hru 0.0965 0.05 0.15 �0.944 0.348

9 EPCO.hru 0.917 0.8 1 0.923 0.359

10 RCHRG_DP.gw 0.0796 0 0.08 �0.388 0.699

11 ESCO.hru 0.0348 0 0.08 �0.367 0.715

12 GWQMN.gw 4385 3500 4500 0.339 0.736

13 GW_DELAY.gw 31.799 20 60 �0.251 0.802

14 SURLAG.bsn 0.0722 0.05 0.09 �0.240 0.811

15 CANMX.hru 0.49 0 2 �0.055 0.956

FIGURE 2 Digital elevation model (a), soil layers (b) and land use land cover (c) of Gomati basin
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regional irrigation schemes and an observable climatic
shift to semi-arid conditions (Bouman et al., 2007;
Goroshi et al., 2017; Raju et al., 2013; Shah et al., 2019).
Therefore, to account for the total evaporative loss more
accurately, ESCO was parameterized within a very nar-
row range to enable the model to extract water from the
deeper soil layers so as to simulate the hydrological bal-
ance. Coming to the sensitivity of the selected set of
parameters are assigned t-stat and p value; the closer the
p value to zero, the more significant was its sensitivity to
the run-off simulation (Table 2).

Even after the calibration and sensitivity analysis, the
parameters may impart the model some uncertainty. The
uncertainty in run-off and discharge simulations of the
SWAT could be due to the inherent deficiencies of input
data, model-build and knowledge or skill of the model-
user (Abbaspour et al., 2018; Arnold et al., 2012). The
quantification of the uncertainty is represented by indices
known as p-factor (0.93) and r-factor (0.99), which were
found satisfactory. Both these factors/indices together
define 95% prediction boundary called ‘95ppu’. This
‘95ppu’ helps to understand how much (%) of the
observed data are bracketed by the 95ppu boundary
within the narrowest possible uncertainty band (Khalid
et al., 2016; Narsimlu et al., 2015). The r-factor was well
below the value of 1.5, which is considered as the opti-
mum criterion for stream flow simulation indicating
thereby that uncertainty analysis was completed success-
fully (Dash et al., 2019). Further, the p-factor of 0.93 indi-
cated that 93% of the observed data is bracketed by the
95ppu boundary, which points to the fact that the model
performed well. Ultimately, the iteration at which p and
r-factors achieved their optimum values and the
corresponding ranges of calibration parameters were
taken as final.

SWAT-CUP SUFI2 based sensitivity analysis and
uncertainty analysis achieved satisfactory model perfor-
mance, and performance statistics also revealed the same
(Table 3). The calibrated SWAT setup for Gomati basin
was found to have performed under the prescribed ‘very
good’ category of performance while simulating run-off,
keeping the observed run-off as a reference. The measures
of performance were estimated with the values of
ENS = 0.89, R2 = 0.92, RSR = 0.34 and PBIAS = �12.9
during calibration and ENS = 0.75, R2 = 0.75, RSR = 0.5

and PBIAS = 2.8 during validation (Figure 3 and Table 3;
Moriasi et al., 2012). However, as per the negative PBIAS,
the calibrated model performance was ‘good’ and it was
rather over-estimated the run-off. But during validation,
the model performance improved further to ‘very good’
category (Table S1). Positive PBIAS indicated that the
model was slightly underestimating the run-off during
validation.

SUFI2 conducts sensitivity and uncertainty analysis
using the concept of Latin Hypercube Sampling (Iman &
Shortencarier, 1984; Khalid et al., 2016; Narsimlu
et al., 2015). It samples the parameters through multiple
regression method and, therefore, assesses the role of
each input parameter influencing the model output. For
example, by attempting to enhance the objective function
(here NSE), it allots ranks to each of the input parameters
as per their estimated sensitivity and in turn reduces the
uncertainty of the output (here run-off; Abbaspour, 2015;
Khalid et al., 2016; Mehan et al., 2017; Mengistu et al.,
2019; Narsimlu et al., 2015).

3.4 | Estimation of standardized
precipitation index (SPI), soil moisture
stress index (SSI) and standardized run-off
index (SRI)

SPI is estimated from the long-term averages of nor-
mally distributed precipitation data by identifying the
deviations from the long-term average (Shukla &
Wood, 2008; Xu et al., 2018). An SPI value of below 0 or
further below �1 for a period of time is an indication of
drought. SSI is based on percentages of normal precipi-
tation, Palmer Z-index and the statistical distribution of
SPI. In principle, SSI uses the z-score to quantify the
standard deviations of the long-term soil moisture time
series from the observed long-term mean soil moisture.
SSI is more popular than SPI due to its simple and
straightforward interpretation with a scope for multi-
time scale drought estimation (Xu et al., 2018). SRI
relates better to hydrological processes that occur over
longer time duration, for it is capable of determining the
lag period that it takes for a meteorological signal to be
translated to a hydrological one, for example, precipitation
pulse translating into river discharge (Shukla &

TABLE 3 General performance

ratings for recommended statistics for a

monthly time step

Performance rating RSR NSE PBIAS (%)

Very good 0.00 < RSR < 0.50 0.75 < NSE < 1.00 PBIAS < ±10

Good 0.50 < RSR < 0.60 0.65 < NSE < 0.75 ±10 < PBIAS < ±15

Satisfactory 0.60 < RSR < 0.70 0.50 < NSE < 0.65 ±15 < PBIAS < ±25

Unsatisfactory RSR > 0.70 NSE < 0.50 PBIAS > ±25
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Wood, 2008). SRI is also known for ease of its calculation
along with the feasibility to multi-time scale drought anal-
ysis similar to SPI and SSI (Zhu et al., 2019).

The SWAT model-generated soil moisture content
(amount of water in the soil profile) and run-off time series
for each of the sub-basins at daily time step from 1986 to
2015 were used for SSI and SRI calculation. As sufficient
and satisfactory data on soil moisture and run-off time series
are not available because of insufficient gauging in Gomati
basin, model-generated soil moisture and run-off time series
were used for drought index assessment. The methodology
given by Gringorten (1963) and McKee et al. (1993) was
used for the calculation of all the three non-parametric
drought indices, that is, SPI, SSI and SRI. These indices were
estimated at 3-, 6-, 9- and 12-month time scales (Dash
et al., 2019; Farahmand & Aghakouchak, 2015). As the
results were reasonably good up to 12-month scale, the 15-,
18-, 24-month scales or beyond were not attempted. SPI, SSI
and SRI thus developedwere further evaluated for interrela-
tionships among themwith the help of Pearson's correlation
coefficient (PCC).

3.5 | Estimation of Pearson's correlation
coefficient (r)

Pearson's correlation coefficient (PCC; generally
expressed by ‘r’) is used to evaluate the correlations
between the univariate drought indices. PCC was esti-
mated between SPI and SSI as well as between SPI and
SRI for all the sub-basins as has been done by Dash
et al. (2019).

The value of ‘r’ ranges from �1 to 1, where 1 indicates
a perfect positive correlation, �1 indicates a perfect nega-
tive correlation, with 0 indicating a state of no relation-
ship. With PCC giving indications into existing
correlations among the above-mentioned pairs of univari-
ate drought indices, multivariate standardized drought
indices (MSDI) were constructed to include the signals of
more than one parameter to conform ‘drought’
conditions.

3.6 | Drought propagation

Rainfall deficit inducing meteorological drought propa-
gates through the water deficits in subsurface processes
of the hydrological cycle and then takes the form of agri-
cultural drought due to deficit of moisture in soil. Fur-
ther, if the moisture deficit persists and reaches deeper
soil layers, the same agricultural drought transforms into
hydrological drought, making the streams lose their flow
(van Lanen, 2006). That is how there lies a significant
link between meteorological and hydrological droughts
(van Lanen, 2006; Wang et al., 2016). This propagation of
meteorological drought into hydrological drought occurs
only when there is continued rainfall deficit. It is also
referred to as ‘delayed response’ of hydrological cycle to
rainfall deficit (Figure 4).

As the Gomati basin has been documented to have
undergone dry years (Bhatt et al., 2020), it is probable
that some of the rainfall deficit might have impacted the
hydrological cycle in the basin. Here, correlation analysis
(Section 3.5) method used by Wu et al. (2021), was relied

FIGURE 3 SWAT model

performance at calibration and

validation (a) and the hydrograph of

simulated versus observed

discharge (b)
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upon to identify propagation of meteorological drought
into hydrological drought and then into agricultural
drought.

3.7 | Construction of multivariate
standardized drought index (MSDI)
through Copula approach

The study adopted the hybrid indicators method out of the
three popular methods of WMO: (i) Single indicator or
index method; (ii) multiple indicators or indices method;
and (iii) composite as well as hybrid indicators or indices
method (Bateni et al., 2018; Huang et al., 2016; Waseem
et al., 2015; WMO, 2016). A set of two hybrid indices
(hybrid of SPI with SSI and SPI with SRI) have been devel-
oped using the Copula approach (Dash et al., 2019; Hao &
Agha Kouchak, 2013; Luetkemeier et al., 2017; Vo
et al., 2020). Copula is a recent method of generating
MSDIs by incorporating more information through a com-
bination of two or more univariate indices. By joining two
or more univariate distributions into a one-dimensional
joint probability distribution Copula builds a multivariate
distribution building a dependence structure of randomly
distributed two/more variables (Favre et al., 2004;
Ganguli & Reddy, 2012; Genest & Favre, 2007; Kolev
et al., 2006; Salvadori & DeMichele, 2004; Sklar, 1973).

To overcome the limitations of univariate drought
indices in case of agricultural and hydrological droughts
indicated by SPI, SRI and SSI, the Copula based approach
was adopted to construct bi-variate drought index (p),
which not only is capable of addressing the individual
univariate indices but also helped in inclusive

characterization of drought via consideration of variable
individualities (Equations 2 and 3).

pagr: ¼C F SPIð Þ,G SSIð Þ½ �, ð2Þ

phyd: ¼C F SPIð Þ,G SRIð Þ½ �, ð3Þ

where C is the mapping function, that is, one of the Cop-
ula members found statistically fitting to construct the
joint probability distribution, out of the marginal proba-
bility distributions of SPI are denoted as F (SPI) and of
SSI and SRI are denoted by G (SSI) and G (SRI), respec-
tively (Quesada-Molina et al., 2003). The ‘Vine Copula’
(Version 2.1.8) and ‘Copula’ (Version 0.999-19.1) pack-
ages of ‘R' were applied to both the cases (Equations 2
and 3) and then coupled with the Copula models of the
respective multivariate joint probability distributions
(Hofert & Mächler, 2011; Kojadinovic & Yan, 2010; Kolev
et al., 2006; Schepsmeier, 2015, 2017; Schepsmeier
et al., 2018; Yan, 2007).

The selection of Copula members to construct the
joint probability distribution is governed by their
respective generator functions. The MSDI derived here
from such a distribution is given by the following
equation:

MSDI¼φ�1 pð Þ,

where φ�1 is the transformation function (inverse stan-
dard normal distribution function) that converts the joint
distribution into the same time scale and space as that of
the univariate indices and p refers to either of the derived
joint functions, that is, pagr: or phyd: estimated by Equa-
tions (2) and (3). The MSDI enables its users to take
advantage of a platform for assessment of the performances
of both univariate as well as multivariate drought indices
(Ayantobo et al., 2019; Chen et al., 2013; Das et al., 2020;
Dash et al., 2019; Hao & Agha Kouchak, 2013; Sadegh
et al., 2017).

3.7.1 | Copula member selection and
goodness of fit assessment

The present study evaluated various members of
Archimedean Copula family and selected the best
members (used in the present study, mentioned later)
to apply in the construction of joint probability distri-
butions of rainfall with soil moisture and that of rain-
fall with run-off for each of the sub-basins. Some of
the commonly used Archimedean Copula family mem-
bers are Clayton, Frank, Gumbel, Ali-Mikhail-Haq and

FIGURE 4 A schematic illustration of precipitation

deficiencies being translated into delayed responses (with time-lag)

of run-off and soil moisture components of any hydrological cycle

of any region Source: Changnon (1987)
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Joe (Ayantobo et al., 2019; Azam et al., 2018; Fan
et al., 2017; Goswami et al., 2018; Reddy & Ganguly,
2011). The criteria of best Copula correspond to a
member, which is characterized by the lowest values
of Akaike's information criterion (AIC; Akaike, 1974;
Maier, 2013; Sadegh et al., 2017; Wang & Liu, 2006).
Apart from AIC, Bayesian information criterion can
also be opted for the same purpose (Thilakarathne &
Sridhar, 2017; Tosuno�glu & Onof, 2019). Selection of
Copula member was closely followed as that been
followed by Dash et al. (2019). To select Copula mem-
ber and to test its goodness of fit, AIC method was
relied upon. It is an established fact that the
uncensored data type is best captured by the ‘Archi-
medean Copula’ family members (Quesada-Molina
et al., 2003). Therefore, Archimedean Copula family is
opted in the present study to construct joint probabil-
ity distributions of rainfall, discharge and soil moisture
datasets, which in fact are uncensored type of time
series datasets.

The entire methodology of the present study is
aimed at utilization of observed datasets as much as
possible to appreciate the basin history for 30 years
period. It also makes use of well-calibrated hydrologi-
cal model to generate hydrological datasets. The time
series of hydrological variables were extracted at
monthly time steps for all the sub-basins to overcome
data unavailability in un-gauged sub-basins. Copula
approach enabled the construction of MSDIs to get a
better view of drought dynamics for each of the sub-
basins. The inter-linkages and inter-dependencies
among different approaches adopted in executing

the present study are shown in the flow chart
(Figure 5).

4 | RESULTS AND DISCUSSION

4.1 | Long-term trend detection

The results show that most of the sub-basins witnessed an
appreciable rise in their annual average temperature trends
(Table 4). All the sub-basins witnessed decreasing cumula-
tive annual rainfall trends; however, the decrease was not
significant in any of the sub-basins. Negative Z, S, Tau of the
MK test and Sen's slope values of the cumulative annual
rainfall analysis indicated that the sub-basins were affected
by decreasing trend of annual rainfall (Table 4). But they
were not significant as the p values were less than alpha
(0.05) in the case of each of the sub-basins. In the case of
annual average minimum temperature, the positive Z, S,
Tau and Sen's slope values for all the sub-basins suggested
that the entire basin had undergone significant (p values
were less than assigned alpha for each sub-basin) rise in
annual average minimum temperature conditions (Table 4).
But as far as the maximum temperature trends were con-
cerned, the increasewas not found significant (p values were
higher than assigned alpha for each sub-basin).

Even the monsoon season trend analysis of the long-
term temperature and rainfall showed similar pattern as
those of annual trends (Table 5). This shows that the sea-
sonal trends of these meteorological parameters were in
accordance with their respective annual trends. These find-
ings of the annual and seasonal minimum temperature

FIGURE 5 Overall view of the

entire methodology followed in the

study
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trend analysis are in perfect agreement with the all-India
and seven homogeneous regions-wide study by Sonali and
Kumar (2013). The agreement in the findings of both the
studies suggests that the Gomati basin had been experienc-
ing these minimum temperature trends since 1970. There-
fore, this history of consistent rising minimum temperature
could be taken as an indication of warming (Dash &
Hunt, 2007; Kothawale et al., 2016; Kothawale &
Kumar, 2002).

4.2 | Drought characterization

The 3-, 6-, 9- and 12-month time scale SPI, SSI, SRI and
MSDI were estimated for all the sub-basins. These four
indices were estimated using rainfall, run-off and soil
moisture data during the period 1983–2015.

4.2.1 | SPI, SSI and SRI

SPI along with SPEI (the evaporation based drought
index) enhances accuracy of meteorological drought
identification, as was discussed by Mehr et al. (2020).
However, close inspections into the meteorological
drought propagation in relation to vegetation health,
soil moisture, run-off and stream flow conditions allow
detection of soil moisture drought as well as hydrologi-
cal drought (deficits in run-off and stream flow) also
(Kwon et al., 2019; Li et al., 2018). Both SSI and SRI are
popular in detection of soil moisture and run-off deficit
generated droughts; soil moisture deficit is generally
connected more with agricultural drought and the run-
off deficit with hydrological drought (Carr~ao et al., 2016;
Mishra et al., 2014; Oertel et al., 2018; Shukla &
Wood, 2008; Wu et al., 2016, 2017).

TABLE 4 The long-term annual trends (1983–2015) of the climatic parameters using Mann–Kendall test at (alpha = 0.05) for the sub-

basins of the Gomati River basin

(A) Max. temperature Z-value Sen's slope S Var(S) p value Tau

Sub-basin 1 1.144 0.013 85.000 5390.000 0.258 0.135

Sub-basin 2 1.109 0.013 82.400 5390.000 0.275 0.131

Sub-basin 3 1.226 0.015 91.000 5390.000 0.233 0.144

Sub-basin 4 1.230 0.014 91.333 5390.000 0.226 0.145

Sub-basin 5 1.348 0.014 100.000 5390.000 0.179 0.159

Sub-basin 6 1.316 0.014 97.600 5390.000 0.195 0.155

Sub-basin 7 1.294 0.013 96.000 5390.000 0.196 0.152

Sub-basin 8 1.355 0.011 100.000 5389.500 0.287 0.159

(B) Min. temperature Z-Value Sen's slope S Var(S) p value Tau

Sub-basin 1 3.242 0.028 239.00 5390.000 0.001 0.379

Sub-basin 2 3.332 0.028 245.600 5390.000 0.002 0.390

Sub-basin 3 3.065 0.026 226.00 5390.000 0.002 0.359

Sub-basin 4 3.065 0.028 226.00 5390.000 0.002 0.359

Sub-basin 5 3.378 0.031 249.00 5390.000 0.001 0.395

Sub-basin 6 3.299 0.029 243.20 5390.000 0.001 0.386

Sub-basin 7 3.537 0.033 260.67 5390.000 0.000 0.414

Sub-basin 8 3.698 0.035 272.50 5390.000 0.000 0.433

(C) Rainfall Z-value Sen's slope S Var(S) p value Tau

Sub-basin 1 �0.109 �0.879 �9.000 5390.000 0.903 �0.014

Sub-basin 2 �0.270 �2.120 �20.400 5390.000 0.643 �0.032

Sub-basin 3 �0.354 �2.148 �26.500 5390.000 0.596 �0.042

Sub-basin 4 �0.150 �0.997 �12.000 5390.000 0.881 �0.019

Sub-basin 5 �1.498 �7.026 �111.000 5389.800 0.378 �0.176

Sub-basin 6 �0.951 �4.667 �70.400 5390.000 0.402 �0.112

Sub-basin 7 �0.677 �2.317 �50.000 5390.000 0.312 �0.079

Sub-basin 8 �1.386 �6.153 �102.250 5389.750 0.147 �0.162
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From the analysis of the precipitation datasets, it was
evident that the 12-month SPI was consistently negative
for all the sub-basins over the entire study period. This
means that the entire basin was affected by near normal
to moderate meteorological drought during the post-
monsoon period (December). The other two indices SSI
and SRI, however, did not capture any drought. Never-
theless, the fifth and the seventh sub-basins did show
some sudden extreme fluctuations in the run-off condi-
tions and to some extent even in soil moisture conditions
too (third column in Figure 6).

The 3-month time scale of SRI indicated the hydro-
logical drought conditions. Almost all the sub-basins
experienced sudden drops in the SRI time series, which
suggested that the occurrences are frequent but are not
severe drought events. The 6-month SRI closely followed
6-month SSI but was only identified in the third, fourth,

sixth and eighth sub-basins where there were fluctuations
in SRI despite the SSI being relatively stable (Figure 6;
first column).

The estimated SSI time series for the 6-month time
scale suggested that even in monsoon season some of the
sub-basins: second, fifth and seventh compared with
others were affected by agricultural drought conditions
because of deficit in soil moisture content (Figure 6; sec-
ond column).

4.2.2 | Estimation of PCC (r) between
various time scales of SPI, SSI and SRI

Cross-correlations between SPI accumulation periods of
1–12 months with SSI and SRI accumulation periods of
1–12 months were estimated to identify the time scales

TABLE 5 The long-term monsoon season trends (1983–2015) of the climatic parameters using Mann–Kendall test at (alpha = 0.05) for

the sub-basins of the Gomati River basin

(A) Max. temperature Z-value Sen's slope S Var(S) p value Tau

Sub-basin 1 0.844 0.010 63.000 5390.000 0.402 0.100

Sub-basin 2 0.706 0.008 52.800 5390.000 0.493 0.084

Sub-basin 3 1.117 0.013 83.000 5390.000 0.272 0.132

Sub-basin 4 1.049 0.013 78.000 5390.000 0.295 0.124

Sub-basin 5 1.144 0.016 85.000 5390.000 0.257 0.135

Sub-basin 6 1.457 0.017 108.000 5390.000 0.172 0.171

Sub-basin 7 1.149 0.016 85.333 5390.000 0.253 0.135

Sub-basin 8 1.348 0.018 100.000 5389.500 0.294 0.159

(B) Min. temperature Z-Value Sen's slope S Var(S) p value Tau

Sub-basin 1 2.125 0.015 157.000 5390.000 0.036 0.249

Sub-basin 2 2.209 0.015 163.200 5390.000 0.033 0.259

Sub-basin 3 1.784 0.012 132.000 5390.000 0.089 0.210

Sub-basin 4 2.030 0.015 150.000 5390.000 0.044 0.238

Sub-basin 5 2.363 0.019 174.500 5390.000 0.029 0.277

Sub-basin 6 2.133 0.017 157.600 5390.000 0.066 0.250

Sub-basin 7 2.556 0.022 188.667 5390.000 0.017 0.299

Sub-basin 8 2.881 0.024 212.500 5390.000 0.014 0.337

(C) Rainfall Z-value Sen's slope S Var(S) p value Tau

Sub-basin 1 �0.095 �0.531 �7.000 5390.000 0.871 �0.011

Sub-basin 2 �0.226 �1.807 �16.800 5390.000 0.566 �0.027

Sub-basin 3 �0.252 �1.253 �18.500 5390.000 0.553 �0.029

Sub-basin 4 �0.059 �0.474 �4.000 5390.000 0.910 �0.006

Sub-basin 5 �1.165 �4.865 �85.500 5390.000 0.497 �0.136

Sub-basin 6 �0.755 �3.542 �55.600 5390.000 0.440 �0.088

Sub-basin 7 �0.595 �2.157 �44.000 5390.000 0.478 �0.070

Sub-basin 8 �1.488 �6.404 �109.750 5389.750 0.185 �0.174
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over which the rainfall deficits carried through the
hydrological cycle induce agricultural and hydrological
droughts. Correlation coefficients have been in regular

use in assessment of drought propagation (Barker
et al., 2016; Kwon et al., 2019; Oertel et al., 2018;
Wanders et al., 2017).

FIGURE 6 Comparison of the time

series of SPI, SSI and SRI for the study period

over the eight sub-basins of the Gomati basin

(arranged from first to eighth, from top to

bottom)
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The estimated PCCs at 6-month SPI with 6-month SSI
and with 6-month SRI were the most prominent correla-
tions observed in the study for the entire basin. Correla-
tion coefficients of the 6-month (June) time scale showed
significant positive correlation (PCC ≥ 0.8; Table 6). This
indicates that the rainfall in the month of June over the
entire study period naturally improved the soil moisture,
and as a result of which run-off in the sub-basins
increased with even low rainfall pulse received in July.
Nevertheless, a considerably high PCC value can also be

interpreted to be indicative of strong relationship; if ever
the rainfall received in June is scanty, then immediately
even the run-off of June may too fall. PCC near to 0.75 at
9-month time scale for the sub-basins 2 and 6 also indi-
cates that they received sufficient rainfall during
September, which improved soil moisture and run-off
(Figure 6 and Table 6). Apart from June and September,
even the rainfall of March (3-month time scale) contrib-
uted to maintain sufficient soil moisture and run-off in
the fourth and sixth sub-basins (Table 6). Sub-basins 2, 4

TABLE 6 PCC (r) between different time scales of SPI, SSI and SRI (‘sub-’ for sub-basin)

SSI3 SSI6 SSI9 SSI12 SRI3 SRI6 SRI9 SRI12

Sub-1 SPI3 0.313 �0.214 �0.183 �0.214 0.514 �0.197 �0.262 �0.197

SPI6 �0.231 0.675 0.089 0.179 �0.128 0.881 0.177 0.07

SPI9 �0.055 �0.149 0.662 0.198 �0.041 �0.174 0.701 0.573

SPI12 �0.252 0.282 �0.057 0.597 0.084 0.227 0.171 0.593

Sub-2 SPI3 0.543 �0.456 �0.295 �0.057 0.8 �0.477 0.026 �0.157

SPI6 �0.304 0.868 0.434 0.087 �0.349 0.954 0.316 0.224

SPI9 �0.039 0.155 0.576 0.247 �0.057 0.31 0.75 0.621

SPI12 �0.195 0.396 0.288 0.12 �0.18 0.386 0.103 0.288

Sub-3 SPI3 0.046 0.319 0.037 0.523 �0.118 0.397 �0.158 �0.089

SPI6 0.046 0.319 0.037 0.523 �0.118 0.397 �0.158 �0.089

SPI9 �0.292 0.024 0.587 0.049 �0.248 0.085 0.49 0.305

SPI12 �0.366 �0.025 0.05 0.003 �0.169 0.134 0.067 �0.09

Sub-4 SPI3 0.904 �0.179 �0.042 0.294 0.345 �0.434 0.044 0.079

SPI6 �0.329 0.745 �0.142 �0.154 �0.503 0.978 �0.112 0.021

SPI9 �0.07 �0.52 0.411 0.386 0.158 �0.28 0.719 0.562

SPI12 �0.215 0.268 �0.336 �0.418 �0.222 0.302 �0.305 �0.269

Sub-5 SPI3 0.379 �0.211 �0.064 0.116 0.379 �0.371 �0.125 �0.131

SPI6 0.145 0.876 �0.064 0.116 �0.054 0.728 0.094 0.323

SPI9 0.025 �0.066 0.684 0.578 �0.093 0.158 0.69 0.202

SPI12 0.32 0.269 0.204 0.335 0.215 0.214 0.224 0.321

Sub-6 SPI3 0.519 �0.257 �0.225 �0.234 0.812 �0.369 �0.255 �0.201

SPI6 0.055 0.843 0.248 0.279 �0.286 0.957 0.247 0.113

SPI9 �0.305 0.025 0.682 0.143 �0.298 0.041 0.746 0.704

SPI12 �0.158 0.269 �0.18 0.441 �0.162 0.132 �0.218 �0.078

Sub-7 SPI3 0.145 �0.211 �0.064 0.116 0.379 �0.266 �0.105 �0.172

SPI6 �0.033 0.876 0.161 0.2 �0.054 0.669 0.125 0.31

SPI9 0.025 �0.066 0.684 0.578 �0.093 0.003 0.604 0.182

SPI12 0.32 0.269 0.204 0.335 0.215 0.209 0.033 0.162

Sub-8 SPI3 0.589 �0.22 0.006 0.231 0.69 �0.241 �0.463 �0.208

SPI6 �0.086 0.882 0.204 0.204 �0.165 0.463 0.268 0.05

SPI9 �0.123 0.122 0.373 0.22 �0.109 0.247 0.3 0.053

SPI12 �0.223 0.199 �0.179 0.201 �0.046 0.235 0.367 0.233

Note: Bold values shown Highly strong positive correlations beyond 0.75 (or closer to 0.75) and those which are negative and related to case studies of sub-basin

2 and 8 have been high lighted.
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and 8 were affected by negative correlation (less than
�0.4) in 3-, 6- and 9-month time scales as far as the rain-
fall and run-off were concerned (Table 6). This suggests
that rainfall of March was not always able to sufficiently
contribute to the soil moisture and run-off. The observa-
tion of the estimated positive r be it between SPI and SSI
or between SPI and SRI indicates that there is no lag in
response time of the hydrological variables to those of the
meteorological ones. But in the cases of second, fourth
and eighth sub-basins deficient rainfall conditions in
March did result in reduced soil moisture and run-off in
the month of June, indicating a lag period of 3 months in
the responses of both the physical processes.

However, it would be inappropriate to decide on
drought occurrences just based on the outcomes of corre-
lation. For final drought assessment, it would be more
appropriate to further look into cumulative results of
indices. For, even if the r values were found considerably
significant, there still remains scope of r values getting
over-powered by any of the parameters, which quite
likely would carry away the decision makers in their
decisions regarding drought monitoring and assessment.
Further, there is possibility of participation of other mete-
orological or hydrological or anthropogenic parameters,
which might affect the correlations. With such possibili-
ties of disturbances, to capture the drought signals and to
infer the type of drought, MSDI could be very useful. As
discussed earlier (Section 3.5), the desirability of MSDI
comes from its very nature of inclusiveness of multiple
parameters.

4.2.3 | Drought propagation

In this study, SPI, SSI and SRI were used to represent the
meteorological, agricultural and hydrological conditions,
respectively. Therefore, the relationships between SPI
and SSI as well as between SPI and SRI have been consid-
ered as indications of meteorological to agricultural and
to hydrological drought propagation.

Propagation time was estimated with the help of
PCC. These correlations were estimated at different time
scales. Studies conducted by Oertel et al. (2018) and Ma
et al. (2019) have also commonly relied on the strength of
correlation between various variables to study drought
propagation in semi-arid river basins similar to the pre-
sent study area. The longest propagation time is esti-
mated for the sub-basin 8 where the rainfall deficit
(meteorological drought) in the month of March has led
to run-off deficits (hydrological drought) in the month of
September (PCC = �0.46). Propagation time estimated
for the sub-basin 2 with a 3 months lag time in response
to the rainfall deficits in March manifested into soil

moisture and run-off deficits in the month of June
(PCC = �0.45 and �0.47, respectively). This points
towards the susceptibility of the upstream region (sub-
basin 2) to various drought conditions. Sub-basin 4 too
has also shown propagation time 3 months for rainfall
(in March) deficit to propagate to hydrological deficit
(in June; PCC = �0.43). While the shortest propagation
time could be assumed for sub-basin 2, that is, a zero lag
time during the month of June, the rainfall deficits in the
month are very much prone to manifest into soil mois-
ture and run-off deficits without much delay (as already
mentioned in Section 4.2.2).

4.3 | Selection of Archimedean Copula
member

Selection of Copula member involves paired assessment
of related pairs univariate drought indices. Joe, Gaussian/
Normal and Gumbel Copula are Archimedean Copula
family members, which were found statistically best fitted
in the construction of joint multivariate distribution at
the 3-, 6-, 9- and 12-month time scales for most of the
sub-basins. The results of test goodness of fit were used to
identify the best fitting Copula members (Table 7;
Azhdari et al., 2021; Bazrafshan et al., 2021). The density
and cumulative density function of the non-parametric
bi-variate MSDI along with its corresponding contour
structures are illustrated in Figures 7 and 8.

4.3.1 | Performance assessment of MSDI

Figure 9 illustrates the performance of three of the
MSDIs considered for detailed evaluation of the second
and eighth sub-basins. The reason behind choosing the
second sub-basin is that the second sub-basin had maxi-
mum as well as consecutive occurrences of dry conditions
followed by wet periods, while the eighth sub-basin was
selected as it reported considerable reduction in run-off
due to diminished rainfall (Table 6). Also, as the eighth
sub-basin is the downstream most, it appropriately fits
into the scheme to assess hydrological mass balance. The
decrease in run-off at the end of monsoons raised con-
cern and prompted the need for further evaluation of this
(eighth) sub-basin. In the second and eighth sub-basins,
analysis pertaining to the impact of rainfall on other
hydrological variables reflected conditions prompting an
examination of the interactions further (Table 6 and
Figure 6).

MSDI1 and MSDI2 were developed from the joint
probability distribution of 3-month SPI with 6-month SSI
and 3-month SPI with 6-month SRI, respectively, for the
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second sub-basin (Figure 9a). MSDI1 and MSDI2 shown
in Figure 9b were developed from the joint probability
distributions of 6-month SPI with 6-month SSI and
6-month SPI with 6-month SRI, respectively. MSDI3 is
the joint probability distribution of 3-month SPI and
9-month SRI for the eighth sub-basin (Fi.9c). Normally,
researchers club third/sixth month with third/sixth
month time scale drought indices in joint probability dis-
tribution to construct MSDIs, but we have clubbed third
month with sixth/ninth month time scale drought indices

(the joining of probabilities of two different time scales of
drought index was possible through the application of
Copula function) only to ensure certain type of drought is
not declared too early and which may not persist long
enough. Figure 9a,b shows that even though SPI, SSI and
SRI individually indicated (index value less than �2)
occurrences of frequent droughts (1996, 1998, 2005, 2012
and 2014) but yet, neither the MSDI1 nor the MSDI2 con-
firmed any such drought incidences. In Figure 9b, both
the MSDIs are seen to be in conformity with each other

TABLE 7 Goodness of fit assessment of Copula members

Sub-basin Constructed MSDI Copula function Parameter p value Lag period

Sub-basin 2 MSDI1 Joe 1.77 0.52 3 months

MSDI2 Gumbel 1.47 0.87 3 months

Sub-basin 2 MSDI1 Gaussian 0.95 0.8 0 months

MSDI2 Gaussian 0.96 0.6 0 months

Sub-basin 8 MSDI3 Joe 1.48 0.73 6 months

FIGURE 7 Joint probability

density function (PDF) generated

using Joe Copula

FIGURE 8 Cumulative density

function (CDF) contours of the Joe

Copula corresponding to the joint

probability density function (PDF)
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as far as responses of second sub-basin are concerned
with a small variation between them. Their conformity
indicates that the sixth month (June) was constantly
below a drought index value of 1 except in 1986 and
1995. That means, as per MSDIs, the second sub-basin
essentially experienced drought events with less severity
and also of short duration contrary to what has been indi-
cated by SPI, SSI and SRI (more severe and of longer
duration droughts). Both MSDIs indicated towards proba-
bilities of a condition of the second sub-basin being dry
rather than being drought affected in June. The second
sub-basin has a considerable spatial coverage: three
(Pilibhit, Shahjahanpur and Kheri) entire districts and
parts of two (Sitapur and Hardoi) more districts with
their decadal population growth rates being above 17%
fall within the sub-basin (Census of India, 2011;
Tiwari, 2015). Such a population growth rate is an indica-
tion of the sub-basin being under obvious pressure to
meet the demands for water of both the agriculture and
domestic sectors. The staple crops of rice and wheat in
the sub-basin are irrigated using the surface and ground
water resources, and as a consequence of which the same
suffered depletion aggravating the dry condition. The
fourth and the eighth sub-basins have also come under
similar pressure as the second sub-basin.

Nevertheless, MSDI3 performed well and was in tan-
dem with both the 3-month SPI and 9-month SRI
(Figure 9c). Overall, MSDI1, MSDI2 as well as MSDI3
varied over a confined range of index variation (from
�0.1 to �1) for the entire period (1986–2015) under
study. This narrow range of variation of the multivariate
indices indicated a condition to be more appropriately

called as ‘drying’ rather than ‘dry’ and to be placed under
the drought category known as near normal (Bayissa
et al., 2018). If frequent and significant deficient rainfall
event(s) occur in near future, then the MSDIs may show
a broad range of variation and a negative MSDI would
then be bound to confirm the drought event(s) for
certain.

Now, a very frequent variation of MSDI within a
value range between �1 and +1 (Figure 9) strongly
confirms that there are no occurrences of severe meteoro-
logical or hydrological drought(s). However, the
corresponding variations of SSI with MSDI indicate that
the second sub-basin was constantly under reduced soil
moisture conditions (Figures 5 and 9a,b). Nonetheless,
agricultural drought was not captured by any of the
MSDIs; it may be because the reduced soil moisture con-
dition was rendered ineffective by regular long period
irrigation supplements and probably even the crop yields
were not affected in the second sub-basin due to this
same reason. The regular irrigations came at the cost of
either ground water or surface water (canals) sources.
Recalling the findings of Ge et al. (2016) mentioned ear-
lier (in the introduction), depletion of groundwater
(to irrigate the fields under reduced soil moisture condi-
tions) indicates onset of drought. The Gomati basin area
being largely under agricultural activity, indications of an
imminent agricultural drought could be presumed
through the results of the present study. Also in future,
in the case of a deficient monsoon or any loss of flow in
the streams/canals in lean periods, conditions may get
worse especially in the upstream regions (second sub-
basin) of the basin.

FIGURE 9 Estimated MSDIs

and their corresponding contour

plots of the joint distribution

generated using case-specific

Archimedean Copula members
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There has been an observable climatic shift all over
India in which the dry sub-humid regions are reported to
have shifted to semi-arid climate conditions (Raju
et al., 2013). Very likely, as has often been reported, the
increase in semi-arid region indicates increased aridity,
which is an obvious pointer of probable onset of droughts
(Jayasree & Venkatesh, 2015; Oertel et al., 2018;
Schwabe & Connor, ; Surendran et al., 2019; Zhang &
Jia, 2013). The NCTHR of which the basin of study is a
part) experiences mainly semi-arid and dry sub-humid
climates. Bisht et al. (2018) undertook a country-wide
evaluation of changes in drought characteristics of mon-
soon homogeneous regions to confirm changes if any in
climate. Their study led them to conclude that the
drought severity, duration and occurrences will increase
in future (Bisht et al., 2018). Another study on the
drought projections under climate change scenario con-
firmed that it is the Northern India that would face
increased droughts in near future than southern India
(Gupta & Jain, 2019).

5 | CONCLUSIONS

Based on univariate drought indices, both the agricul-
tural and hydrological drought events were identified to
have affected the basin time to time within the period
from 1986 to 2015. On the other hand, the multivariate
analysis of probability of drought for the basin confirms
that when various parameters are involved in collabora-
tive drought index development, the developed index
may not agree with the respective individual responses of
the constituent variables. As such, the MSDIs estimated
for the study period for the Gomati basin also did not
indicate any drought events. In that way, the MSDIs were
in disagreement with the SPI, SSI and SRI, which indi-
cated frequent occurrences of drought.

As far as detection of onset of drought using univari-
ate indices is concerned, the basin was found very sensi-
tive to deficits in the soil moisture. The present study on
Gomati basin reveals that soil moisture deficits got trans-
lated into dry agricultural conditions (reduced soil mois-
ture), which further turned into dry hydrological
conditions (reduced run-off; Figure 5). Indeed, deficit
conditions of sub-basins 2, 4 and 8 (Table 6) are excep-
tions: for, in these cases, the PCCs were less than �0.4.
and there was 3 months lag in hydrological responses.
The deficit in rainfall in March by and large affected the
basin-wide soil moisture and consequent run-off in June,
as has been mentioned earlier.

On the whole, the given MSDI based analysis
suggested that the upper Gomati basin had undergone a
consistent drying in the month of June but has not

shown any ‘drought event’ in particular. The month of
June is crucial for kharif crops, namely rain-fed cultiva-
tion of rice, sesame, millet, maize, black gram and pigeon
pea. Soil moisture availability during the sowing period
plays a crucial role, especially for such crops during this
period (June). Going by the trend of results, it can be said
that the agricultural area under rain-fed kharif crops,
especially in the upper basin, requires irrigation during
field preparation itself. That means, relying solely on
rains may adversely impact these crops in this region.
The results finally indicate possibility of impending agri-
cultural drought in the upper part of the Gomati basin.
Agricultural management strategies have to be planned
and implemented to avert such imminent drought(s).

Therefore, considering this entire study as a represen-
tative of the NCTHR, it is clear to a certain extent that
MSDIs could be used not only for comprehensive drought
assessments of smaller- and medium-sized basins within
alluvial plains but can also help screen larger homoge-
neous regions which are expected to witness drought(s)
in future.
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