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Abstract
Climate change impact on crop production using different climate model projections varies considerably and it is challenging 
to choose a suitable climate scenario for risk assessment. This study aims to assess the climate change impact on the wheat 
crop in nine agro-climatic zones (ACZs) of Uttar Pradesh (UP) in Northern India using the CERES-Wheat crop model, driven 
by high resolution projected climate from different regional climate models (RCMs). The results show that the vegetative 
growth period would be shortened across the ACZs and scenarios where higher reductions will be witnessed under RCP 8.5 
viz., up to 10 days in the 2050s (2040–2069), and 14 days in the 2080s (2070–2099). Also, in the 2080s shortening up to 
17 days will be observed in the total growth period under RCP 8.5. When elevated  CO2 concentration was not considered the 
wheat yields were found to reduce up to 20.5 and 30% under RCP 4.5 and RCP 8.5, respectively, in the 2050s. In the 2080s, 
the losses will be more pronounced reaching up to 41.5% under RCP 8.5. With the consideration of  CO2, the yield reductions 
will be up to 14 and 18% under RCP 4.5 and RCP 8.5 respectively in the 2080s. Uncertainty associated with climate model 
revealed that ACCESS 1-0 and MPI-ESM-LR predicted higher mean yield reductions while CNRM-CM5 has shown a mild 
effect. Present study concluded that eastern UP is a vulnerable region for wheat production in the 21st century. The results 
suggest that there is an urgent need for developing suitable adaptation strategies to ameliorate the adverse effects on wheat 
production in UP through regional policy planning.
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Introduction

Climate change, an anthropogenic phenomenon leading to a 
rise in temperature, irregular precipitation, and other weather 
extremes, has adverse impacts across the globe (IPCC 2021). 
Its direct impact is evident on agriculture, thus affecting food 
production and hence, food security (Lobel et al., 2011; 
Rosenzweig et al., 2014; Lesk et al., 2016; Asseng et al., 

2015; Mall et al., 2021). It is projected that by the 2050s 
if the carbon emissions are not controlled, the global tem-
perature will rise by 1.5 °C and India would be among the 
hardest-hit countries. The ramifications will be witnessed 
in form of reduced crop production, increased heat waves, 
negative impact on livestock, disease outbreaks, economic 
losses, etc. (IPCC 2018; Singh et al., 2021a). Globally, India 
is the second-largest producer of wheat with a production 
share of − 14% grown in 13% of the global wheat area (DES 
2021). India has made remarkable progress in wheat produc-
tion by reaching a record production of 107 million tonnes in 
2019–20 from a minimal production of 6.46 million tonnes 
in 1950–51 with a marginal increase in area under wheat cul-
tivation from 9.75 million ha in 1950–51 to 31.45 million ha 
in 2019–20 (DES 2021). Among the wheat-producing states 
of India: Uttar Pradesh (UP) contributes 32.7% of the culti-
vated area of − 30% of total wheat production (DES 2021). 
It is the staple diet of the country and an undeniable crop for 
nutritional as well as the economic security of the nation.
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Wheat is sensitive to temperature fluctuation and tem-
perature stress (> 30  °C) during flowering may lead to 
sterility and poor grain set (Alghabari et al., 2014). Supra-
optimal temperature and heat stress affect yield, phenology, 
grain nitrogen content, and grain mass of wheat (Asseng 
et al., 2011; Song et al., 2018, 2020; Chakrabarti et al., 
2021; Osman et al., 2020; Teixeira et al., 2013). The heat 
stress affects the plant physiology by reducing the number 
of tillers, reduced leaf area index, breakdown of chloro-
phyll, photosynthesis inhibition, increased photorespira-
tion, loss of osmotic potential, rise in rate of evapotran-
spiration, reduced net carbon assimilation, deactivation 
of Rubisco and increased root respiration (Akter & Islam, 
2017; Dhyani et al., 2013; Farooq et al., 2011; Zampieri 
et al., 2017; Kumari et al., 2019). The unequivocal sensitiv-
ity of wheat to temperature and precipitation changes will 
have a negative impact on wheat growth globally (Asseng 
et al., 2015). In Indo-Gangetic Plain (IGP) and Northwestern 
India, there is a declining trend in the yield of wheat which 
has raised serious concern about the region’s food supply 
(Sonkar et al., 2019). It thus becomes imperative to under-
stand the impacts of climate change on agricultural produc-
tion to develop suitable adaptation options to strengthen 
resilience (Aggarwal & Sivakumar, 2010; Yadav et al., 2015; 
Campbell et al., 2016; Richardson et al., 2018; Mall et al., 
2019; Bhatt et al., 2019; Sonkar et al., 2020).

Climate change impact assessment can be done through 
statistical analysis, experiment-based studies, and process-
based crop models (Liu et al., 2016; Mall et al., 2018; Zhang 
et al., 2019; Ye et al., 2021). Process-based crop simula-
tion models integrate the underlying mechanism of crop 
response to environment i.e., the genotype & phenotype 
(genotype × environment interaction). Projections made by 
climatic models, hence are widely used in assessing the cli-
mate impact. The prediction of future climate impacts with 
precision is difficult and subject to the climate model com-
plexities, use of crop models, climate scenarios considered, 
cascading the uncertainty in predictions (Deser et al., 2012; 
Maslin & Austin, 2012; Wang et al., 2020a). Also, there 
are significant biases in the Global Climate Models projec-
tions, making it imperative to correct the bias. Furthermore, 
impact assessments using gridded climate data are region 
specific (He et al., 2020; Wilcox & Makowski, 2014). Apart 
from this, an understanding of crop response at elevated  CO2 
levels rather than only temperature is required to produce 
robust impact assessments as the former situation sounds 
more realistic (Lobell & Gourdji, 2012). Hence, the use of 
a combination of climate models under different scenarios 
proves more effective to deploy reliable decision support in 
climate change impact and agricultural system vulnerability 
assessment (Asseng et al., 2013; Martre et al., 2015; Mereu 
et al., 2021; Singh et al., 2018; Toreti et al., 2020). There 
have been studies on the impact of climate change on wheat 

yields, phenology, grain quality, and nutrient management, 
at global and country-level but region-specific studies with 
multiple scenarios in India are limited.

Therefore, in the light of the above, this study was designed 
to investigate the impacts of climate change on wheat in dif-
ferent agro-climatic zones (ACZs) of UP in northern India 
using multiple regional climate model simulations under 
two emission scenarios (RCP 4.5 and RCP 8.5) in combi-
nation with well-established crop simulation model CERES-
Wheat for two time periods 2050s (2040–2069) and 2080s 
(2070–2099) with different  CO2 concentrations. The specific 
goals of this study were to analyze the observed and projected 
climatic variables and quantify the potential impacts of future 
climate change on wheat phenology and production in UP. 
This will be instrumental in assessing the response of wheat 
to climate change more reliably in northern India. Any change 
in agriculture production has huge socio-economic implica-
tions which directly affect the population. Hence, the study 
may play a decisive role in framing agro-centric policies by 
the government and concerned stakeholders.

Materials and Methods

Study Site

The study was conducted for Uttar Pradesh (UP) state (23° 
50ʹ-30° 45ʹ N latitude to 77° 04ʹ-84° 38ʹ E longitudes) in 
northern India covering an area of 29.4 million hectares 
of the Indo-Gangetic plains and characterized by humid 
subtropical climate. The novelty of this research lies in the 
zone-wise assessment of the whole region at 0.5 × 0.5 km 
resolution using different regional climate models and  CO2 
concentrations to understand the regional disparity in dis-
tribution of meteorological variables and their impacts on 
wheat production. The analysis was done for the nine agro-
climatic zones (ACZs) of UP namely, Bhabhar and Tarai 
Zone (BTZ), Bundelkhand Zone (BKZ), Central Plain Zone 
(CPZ), Eastern Plain Zone (EPZ), Mid-Western Plain Zone 
(MWPZ), North-Eastern Plain Zone (NEZ), South-Western 
Semi-Arid Zone (SWSAZ), Western Plain Zone (WPZ), and 
Vindhyan Zone (VZ) (Fig. 1). Specific characteristics i.e., 
area, climate, wheat production statistics, etc., of each zone, 
are illustrated in Table 1. Here, the spring wheat is sown 
in the rabi season (November to April) under irrigated and 
unirrigated conditions.

Climate Data

Long-term observed daily meteorological data i.e. maximum 
temperature, minimum temperature, and rainfall for a period 
of 1980–2009 (baseline period) at a resolution of 0.5° × 0.5° 
for the nine ACZs of UP were obtained from the Indian 
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Fig. 1  Description of agro-climatic zones of Uttar Pradesh. a Population density b Area under wheat cultivation c Wheat production and d Pro-
ductivity of wheat. Data is an average for a period of 1997–98 to 2018–19. Population data collected from Population Census 2011

Table 1  General information about different agro-climatic zones of Uttar Pradesh

Agro-climatic zone Area (in Ha) Climate Soil type Maximum temperature Minimum temperature

BKZ 29,61,006 Dry sub-humid to arid Mixed red & black soil 23.3–38.93 °C 8.20–21.62 °C
BTZ 16,97,125 Sub-humid Clay & sandy loam, alluvial 19.26–33.98 °C 6.75–18.38 °C
CPZ 56,47,307 Dry sub-humid to semi-arid Clay & sandy loam, silty 

clay
21.84–37.74 °C 8.21–21.12 °C

EPZ 38,08,718 Dry sub-humid Sandy loam, clay loam, 
alluvial

22.55–38.11 °C 8.59–21.21 °C

MWPZ 16,97,125 Sub-humid Clay & sandy loam, alluvial 20.20–35.74 °C 7.04–19.46 °C
NEPZ 29,55,485 Humid-sub tropical Sandy loam, silty loam 22.27–37.60 °C 8.57–21.07 °C
SWSAZ 22,34,222 Semi-arid Sandy loam, sandy soil, 

alluvial
21.44–38.07 °C 7.39–21.27 °C

VZ 13,81,840 Sub-humid Red laterite & black Soil 23.39–38.50 °C 8.71–21.26 °C
WPZ 16,37,424 Semi-arid Sandy loam, loam, silty loam 19.97–35.58 °C 6.93–19.60 °C
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Meteorological Department (IMD). On the other hand, daily 
surface solar radiation data (MJ/m2/day) was computed 
using the Hargreaves and Samani method (Hargreaves & 
Samani, 1982, 1985).

For future, the study used five Global Climate Models 
(GCMs) output for dynamically downscaled climate pro-
jections using two Regional Climate Models (RCMs) first, 
Regional Climate Model (RegCM) and second, Confor-
mal-Cubic Atmospheric Model (CCAM). An ensemble of 
four dynamically downscaled projections at a resolution of 
0.5° × 0.5° was obtained using CCAM by forcing the bound-
ary conditions from four different Global Climate Models 
(GCMs) namely ACCESS1-0, CNRM-CM5, NorESM1-
M, MPI-ESM-LR (Online Resource 1). On the other hand, 
RegCM was used to generate dynamically climate projec-
tions from global climate model MPI-ESM-MR. These 
GCMs output (using RCMs for downscaling) are found to 
be suitable for impact assessment studies over Indian region 
because of their efficient performance (Mall et al., 2018; 
Singh et al., 2021b; Jaiswal et al., 2022). The CCAM data 
from Coordinated Regional Climate Downscaling Experi-
ment -South Asia (CORDEX-SA) experiment was obtained 
from the Centre for Climate Change Research (CCCR), 
Indian Institute of Tropical Meteorology (IITM), India. The 
downscaled RegCM simulations at 0.25° × 0.25° resolution 
were simulated at DST-Mahamana Centre of Excellence in 
Climate Change Research (MCECCR), Banaras Hindu Uni-
versity, India. This was then regridded to 0.5° × 0.5° resolu-
tion using the bilinear interpolation method to bring all the 
models to same spatial resolution (Singh et al., 2021b; Voro-
pay et al., 2021). Solar radiation was then computed using the 
same methods as used for the baseline period. The data was 
obtained for two time periods: the 2050s (2040–2069) mid-
century and the 2080s (2070–2099) end-of-century under 
two RCP scenarios 4.5 and 8.5 each. RCP 4.5 (optimistic 
scenario) and 8.5 (pessimistic scenario) correspond to an 
anthropogenic radiative forcing reaching 4.5 and 8.5 W/m2, 
respectively, in relation to the pre-industrial level by 2100.

Uncertainties in climate projections arising through 
global climate model, call for bias correction for accurate 
and reliable representation of regional climate information 
(Mall et al. 2018; Laux et al., 2021). The climate dataset 
used in the study was bias-corrected using Variance scal-
ing approach to remove bias associated with temperature 
data and Local Intensity Scaling method for rainfall (Jaiswal 
et al., 2022; Teutschbein & Seibert, 2012). The monthly and 
seasonal mean of solar radiation (SRad) and bias-corrected 
maximum temperature  (Tmax) and minimum temperature 
 (Tmin) of wheat growing season were used to compare the 
changes in temperature and solar radiation in the future with 
respect to the baseline period. The use of multiple GCMs 
output establishes the range of uncertainty which will help in 

investigating inter-model variability during the assessment 
of climate change impacts on crops.

CERES‑Wheat Model

The wheat yield simulations were done using CERES-Wheat 
module of the Decision Support System for Agro technol-
ogy Transfer (DSSAT) version 4.7 cropping system model 
(Hoogenboom et al., 2017; Jones et al., 2003). It is one of the 
most widely used models and has been validated in a wide 
variety of environments (Basso et al., 2016). The model 
requires daily climate data (maximum and minimum temper-
atures, solar radiation, and rainfall), soil physical properties 
(pH, EC, bulk density, organic carbon, etc.), and phenologi-
cal information such as date of planting, seedling emergence, 
flowering and maturity, yield, biomass, grain number, LAI, 
etc., and genetic traits specific for the cultivar. The ability 
of this model to simulate phenology, dry matter, nitrogen 
dynamics, soil moisture/water balance, and environmental 
modification, etc., under a wide variety of conditions has 
been proven for a range of crops, regions, and applications.

Simulation and Impact Assessment

The CERES-Wheat model has been validated by Mall et al. 
(2016) for this region. A popular wheat variety of UP, HUW-
234 was used for simulations. It is a late sown variety of 
110–120-day growth period and is sown after harvesting 
of rice and sugarcane in eastern and western regions of UP 
respectively. Since, the study was done solely to assess the 
impact of climatic variables on wheat yield, all other opti-
mum crop management practices like sowing date, irriga-
tion, fertilization, etc., used as an input in the model were 
kept the same for all the ACZs. The simulations were done at 
sowing date of 15 November, and a plant population density 
of 100 plants/m2. Already calibrated and validated genetic 
coefficient generated and used by Forecasting units of Indian 
Meteorological Department was used for the simulations 
(AMFU, 2020). The simulations were done with no nutri-
ent or water stress at all the locations for baseline and future 
periods with and without  CO2 effects.

The effect of  CO2 was studied by conducting simulations 
at two different  CO2 concentrations in order to cover all the 
possible scenarios, likely to occur in the future. A concentra-
tion of 380 ppm was used in the baseline as well as for future 
simulations without  CO2 effect, in the 2050 and 2080s under 
RCP 4.5 and 8.5 scenarios as suggested. For simulations with 
 CO2 effect, under RCP 4.5, the 2050 and 2080s corresponded 
to an elevated  CO2 of 499 and 532 ppm respectively and in 
RCP 8.5, 2050 and 2080s corresponded to an elevated  CO2 
of 571 and 801 ppm respectively. This provided 40 climate 
change scenarios (5 climate model outputs × 2 RCPs × 2 
study periods × 2  CO2 concentrations) for impact assessment. 
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The detailed information on different scenarios can also be 
accessed from agmip.org (Rosenzweig et al., 2015).

Climate variables have a direct impact on crop growth, any 
deviation from the optimum range of temperature can lead to 
a significant change in yield of wheat. Thus, the response of 
wheat yield and phenology in 40 different climate change sce-
narios was analysed with respect to the baseline period using 
projected and observed climate data. In the study, simulations 
were performed for the baseline period as well as for the 40 
climate change scenarios at each grid, and then analysis was 
done at grid level and later clustered under respective ACZs.

The weather variables were first checked for the presence 
of any multicollinearity using Pearson’s correlation test (r), 
which may influence the cause-effect relationship between 
yield and weather variables in the study. Two or more vari-
ables are considered correlated if the correlation coefficient 
between the variables remains > 0.7, in such case the uncor-
related variables were considered in the regression model as 
explanatory variables.

The association between baseline climate variables and 
wheat yield was then established using generalized additive 
mixed-effect modeling (gamm). The model was a multivariate 
regression model that took into consideration the minimum 
and maximum temperature, and solar radiation and rainfall as 
independent variables against wheat yield, a dependent vari-
able that makes the core model. The core model was adjusted 
for district fixed effects and the potential confounding of long-
term time trend considering quasi-poisson distribution. The 
following regression model was used:

where E
[(

Y
dt

)]

 denotes the wheat yield in district “d” at 
time “t”(here, year);c is the intercept that adjusts the district-
specific effect, β is the regression coefficients; f refers to 
the smoothed function of time (penalized cubic smoothing 
spline) that adjusts confounding effect of recent capital and 
technical achievements in wheat cropping system during 
these years and, bi ~ N(0,σb 2) is a random-effects intercept 
for each grid i that accounts for grid-specific variations. The 
result is expressed in the form of a percent change in yield 
per unit change in weather variables with a 95% confidence 
interval (CI). The models were fit using the gamm function 
from the “MASS” library in R.
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Results

Projected Changes in Climate Variables During 
Wheat Growth Season

The rabi season baseline average  Tmax and  Tmin were 26.8 
and 11.7 °C respectively, whereas the mean seasonal tem-
perature was 19.25 °C. The model ensemble showed that 
during wheat growing season  Tmax and  Tmin will increase 
in all climate change scenarios (Online Resource 2). Under 
RCP4.5,  Tmin is expected to increase by 1.79 °C in the 2050s 
and 2.04 °C in 2080s, and under RCP8.5 by 2.83 °C in 2050s 
and 4.30 °C in 2080s across the nine agro-climatic zones. 
On the other hand,  Tmax is expected to increase by 1.52 °C 
in the 2050s and 1.66 °C in 2080s under RCP4.5 and under 
RCP 8.5 by 2.36 °C in 2050s and 3.58 °C in 2080s, showing 
a drastic change in temperature with a wider range.

The downscaled projections at individual level, how-
ever, show significant heterogeneity in temperature changes 
across all the zones with variable magnitude (Fig. 2). Under 
RCP 4.5, the seasonal average  Tmax is expected to rise by 
0.66 °C (CNRM-CM5) in NEZ to 2.20 °C (ACCESS 1-0) 
in CPZ and 0.84 °C (NorESM1-M) in WPZ, to 2.72 °C 
(ACCESS 1–0) in NEZ in the 2050 and 2080s, respectively. 
While the rise in average seasonal  Tmin will be comparatively 
higher ranging from 1.09 °C (RegCM) in WPZ to 2.59 °C 
(ACCESS1-0) in VZ and 1.40 °C (NORESM1-M) in WPZ 
to 3.19 °C (ACCESS1-0) in VZ in the 2050 and 2080s, 
respectively. Extreme changes were witnessed under RCP 
8.5, where the seasonal average  Tmax will rise by 1.39 °C 
(RegCM) in WPZ to 3.47 °C (ACCESS1-0) in SWZ, and 
2.46 °C (NORESM1-M) in NEZ, to 4.69 °C (MPI-ESM-
MR) in SWZ, in the 2050s and 2080s, respectively. The rise 
in seasonal average  Tmin will range from 1.72 °C (RegCM) in 
WPZ to 4.12 °C (ACCESS1-0) in VZ, and highest increment 
of 3.38 °C (CNRM-CM5) in WPZ to 5.52 °C (ACCESS1-0) 
in VZ in the 2050 and 2080s, respectively. Varied results 
were obtained in the case of  Tmax with no zonal distinction. 
An increase in  Tmin was observed from western to eastern 
UP, where maximum rise in  Tmin will be witnessed in VZ. 
ACCESS 1-0 is associated with higher temperature incre-
ment while RegCM and NorESM1-M are associated with a 
lower rise in temperature as compared to baseline.

The analysis of projected monthly average  Tmin and  Tmax 
along with baseline temperature over the nine ACZs of UP 
for the wheat season is shown in Fig. 3. The trend revealed 
that the monthly  Tmax and  Tmin are uniformly increasing 
among all the climate models compared to baseline across 
the zones. However, the magnitude of temperature rise 
will be higher in April followed by January as compared to 
other months across the zones. It is noteworthy that terminal 
spikelet development takes place around January and grain 
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filling in March–April. Under RCP 4.5 during the 2050s the 
 Tmin in January will rise from 1.30 °C (RegCM) in WPZ to 
2.96 °C (ACCESS 1-0) in VZ (Fig. 3a). March and April are 
crucial for grain filling and Tmax will increase up to 2.40 °C 
(RegCM) in SWSAZ and 2.36 °C (RegCM) in BTZ, respec-
tively. In the 2080s the magnitude of rise in  Tmin will be 
highest in January month across all the zones ranging from 
1.44 °C (NORESM1-M) in BTZ to 3.38 °C (ACCESS1-0) 
in VZ. ACCESS1-0 model projected the highest  Tmax reach-
ing 41.6 °C during April in BKZ while the lowest  Tmax will 
be 20.1 °C as per NORESM1-M during January month in 
WPZ (Fig. 3b).

Under RCP 8.5 similar trends are observed but with a 
higher magnitude. In the 2050s,  Tmin ranged from 8.9 °C 
(RegCM) in BTZ in January to 25.4 °C (ACCESS1-0) in 
BKZ in April (Fig. 3c). While  Tmax will range from 20.9 °C 
(NORESM1-M) in BTZ in January to 42.1 °C (ACCESS1-0) 
in BKZ during April. In the 2080s, the  Tmin will range 
from 10.4 °C (CNRM-CM5) in January in BTZ to 27.2 °C 
(ACCESS1-0) in BKZ (Fig. 3d). Here, ACCESS1-0 is asso-
ciated with a higher increment of weather variables while 
RegCM and CNRM-CM5 are associated with a moderate 
increment in weather variables as compared to baseline. 
Apart from Tmax and Tmin, the analysis of SRad revealed 
that there will be a marginal decrease (upto 1.67 W/m−2/day) 
in SRad over all the climate change scenarios as compared 
to the baseline (Online Resource 3). The rainfall on the other 
hand, has shown irregular variations. The month wise analy-
sis of rainfall showed that the changes (mm/day) in all the 
climate change scenarios are marginal but heterogeneous 
viz − 0.03 mm/day in month of February in the 2080s under 
RCP8.5 in MWPZ to + 2 mm/day in February in the 2080s 
under RCP4.5 in WPZ (Online Resource 4).

Projected Change in Wheat Phenology

In this study, we found that vegetative growth period as well 
as total growth period would be shorter in the future across 
the nine ACZs (Fig. 4). In the 2050s under RCP4.5, the aver-
age vegetative growth period would shorten to the maxi-
mum extent in VZ with ACCESS1-0 predicting an extreme 
shortening of 6.4 days to CNRM-CM5 showing a minimum 
shortening of 2.8 days. On the other hand, zones like WPZ 
and MWPZ would have a minimum shortening of vegetative 
growth period ranging from 0.6 to 1.1 days and 0.6 to 0.8 days 
respectively. The vegetative growth period shortening under 
RCP 8.5 would be more prominent but following the same 

zonal pattern where VZ will have the highest shortening of 
5–10.7 days followed by BKZ (3.9–9.2 days) and WPZ show-
ing the lowest reduction of 0.7–2.5 days.

During the 2080s, the vegetative growth period will 
shorten by 7.7 days in VZ followed by BKZ (1.8–6.6 days), 
and EPZ (2–6 days) to a minimum shortening of 0.5–1.4 days 
in WPZ and 0.8–2 days in MWPZ under RCP 4.5. Severe 
shortening is observed under RCP 8.5 up to 9.3 to 13.7 days 
in VZ and 2.2–6.2 days in WPZ. In this case, ACCESS1-0 
(2.8–10.9 days) and MPI-ESM-LR (2.5–10.9 days) have 
shown extreme shortening of vegetative growth period 
among both RCPs in nine ACZs on an average, conceivably 
because the temperature increase shown by these models 
are much higher than the rest of the climatic models. While 
as per CNRM-CM5 the shortening will be 0.4–6.6 days and 
as per NorESM1-M it will be 1.4–6.4 days across all the 
scenarios.

Overall, the total growth period will shorten by 2–3 weeks 
in UP while significant variation will be observed among 
different climate change scenarios and ACZs individu-
ally (Fig. 4). Extreme shortening of total growth period is 
expected under RCP 8.5 ranging from 1.1 to 14 days in the 
2050s and 3.6 to 17.3 days in the 2080s. While under RCP 
4.5 the shortening of the total growth period would range 
from 0.6 to 10.7 days and 0.4 to 10.5 days in the 2050 and 
2080s respectively. Among the ACZs, the shortening of 
the total growth period in the 2050s will be up to 10.7 days 
under RCP 4.5 and 13.9 days under RCP 8.5 in VZ as per 
ACCESS1-0 model. While during the 2080s, maximum 
reduction will be witnessed as per ACCESS1-0 model, 
again in VZ up to 10.4 and 17.3 days under RCP 4.5 and 8.5 
respectively. Like the vegetative growth period, the short-
ening of total growth period is following the same pattern. 
It can be said that, ACCESS1-0 (5.1–13 days) and MPI-
ESM-LR (4.1–13 days) showed the highest reduction while 
results from CNRM-CM5 (2.4–8.7 days) and NorESM1-M 
(3.3–8.4 days) reveal comparatively lesser shortening. The 
changes in total growing period have wide variations across 
the zones and majorly between the model projections, show-
ing a longitudinal increase in magnitude as we move towards 
zones like EPZ, BKZ, NEZ, and VZ in eastern UP. It agrees 
with the incremental rise of temperature in eastern UP as 
compared to western UP in the 2050s and 2080s as shown 
earlier.

Impacts of Climate Change Projection on Wheat 
Yield

Results considering the model ensemble show that, when 
 CO2 effects were not considered, the wheat yields would be 
reduced by 13.3–31% under RCP 8.5 across all the zones in 
the 2050 and 2080s (Online Resource 5). Since higher  CO2 
levels offset the detrimental effect of higher temperatures 

Fig. 2  Change in mean seasonal maximum temperature (Tmax, °C) 
and minimum temperature (Tmin, °C) as projected by climate models 
relative to baseline period (1980–2009) under different representative 
pathways during mid-century (2050s) and end-of-century (2080s) for 
9 agro-climatic zones of Uttar Pradesh

◂
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in wheat and other crops as well, yield benefit had been 
seen when increased  CO2 effect is considered and a marginal 
increase in yield was found in two zones BTZ (0.4–2.2%) 
and WPZ (1.6–3%) while the lower reductions in other 
zones from 0.2% in MWPZ to 13.2% in VZ, under both the 
scenarios.

Results indicated a reduction in wheat yield with a signifi-
cant amount of variation among ACZs (Fig. 5). When effects 
of  CO2 were not considered the yield was reduced invariably 
in the 2050s with extreme reduction witnessed in VZ as all 
climate models reveal highest reduction of 20.5% under RCP 
4.5 and 30% under RCP 8.5 as projected by ACCESS1-0. 
The lowest yield reduction is observed in WPZ with the low-
est magnitude of 1.9% under RCP4.5 and 5.7% under RCP 
8.5 as per RegCM. In the same time period, when effects 
of  CO2 are considered the yield is reduced (0.5–16%) in all 

zones as per ACCESS1-0 with the highest reduction in VZ 
followed by NEZ. While BTZ and WPZ will have a slight 
increase in mean yield with the remaining four climate mod-
els. RegCM showed an increase in yield up to 6.7% under 
RCP4.5 and 8.6% under RCP 8.5 in BTZ and 8.7–11% under 
RCP 4.5 and 8.5 respectively in WPZ.

The losses in wheat yield during the 2080s, when  CO2 
effect was not considered would range from 6 to 25% 
under RCP 4.5 with more reductions under RCP 8.5 rang-
ing from 23 to 41.5% across the zones due to more tem-
perature extremes expected in this period (Fig. 5). Higher 
reductions are expected in VZ (> 17%), NEZ (> 13%), and 
BKZ (> 12%) according to ACCESS1-0, CNRM-CM5, and 
MPI-ESM-LR under RCP 4.5. Similarly, severe reductions 
under RCP 8.5 would be seen in VZ (> 33%), BKZ (> 29%), 
and NEZ (> 28%) with ACCESS 1–0, MPI-ESM-LR, and 

Fig. 3  Average monthly (wheat growing season) maximum tempera-
ture  (Tmax) and minimum temperature  (Tmin) during baseline period 
(1980–2009) and a mid-century (2050s) under RCP 4.5 b end-of-
century (2080s) under RCP 4.5 c mid-century (2050s) under RCP 8.5 

and d end-of-century (2080s) under RCP 8.5, as projected by differ-
ent climate models in 9 agro climatic zones of Uttar Pradesh. Here 
the solid lines represent the  Tmax and dashed lines represent the  Tmin
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NorESM1-M. ACCESS 1.0, CNRM-CM5 and MPI-ESM-
LR predicted a yield loss ranging from 0.7 (EPZ) to 14.3% 
(VZ) across the zones under RCP 4.5. NorESM1-M pre-
dicted a rise in yield of 0.2–1.3% in BTZ, EPZ, MWPZ, 
WPZ, and RegCM revealed a positive increase of 2.2–6.7% 
in CPZ, EPZ, BTZ, WPZ, and MWPZ. Higher yield reduc-
tion is predicted under RCP 8.5 with ACCESS1-0 and 
MPI-ESM-LR, ranging from 3% in MWPZ to 18% in VZ. 
A minor increase up to 4.5% in mean yield was noticed in 
three zones BTZ, MWPZ, and WPZ, as per CNRM-CM5, 
NorESM1-M, and RegCM.

Response of Wheat Yield to Climate Variables

The correlation between wheat yield and weather variables 
was heterogeneous across the zones (Online resource 6). 
The regression results indicate that rainfall has no signifi-
cant effect on wheat yield but there is a negative relationship 
between yield with minimum and maximum temperature 
(Table 2). A unit rise in  Tmin will reduce yield across the 
zone by 3–7.8% and a unit rise in  Tmax will reduce yield 
by 1.9–6%. SRad however has a positive relationship with 

wheat yield and a unit rise in it will increase it by 5.4–10.5%. 
This cumulative effect of each variable hence had an impact 
on the yield.

Dose–Response Relationship

In general, a linear association between  Tmax and  Tmin and 
wheat yield was noted with an overall decrease in crop yield 
with increasing temperature (Fig. 6). However, for  Tmin, 
the relationship was not necessarily linear. For most of the 
zones, as  Tmax rises above 24 °C, and  Tmin above 10 °C, 
the wheat yield starts to decline. SRad on the other hand 
shows a positive but linear relationship with the wheat yield, 
with an overall increase in crop yield with increasing solar 
radiation. As the SRad rises above 14 MJ/m2/day, the crop 
yield increases. The association with the rainfall was not 
very robust, as was evident with a wide confidence interval, 
thus, the wheat yields are more associated with temperature 
and radiation than rainfall.

Fig. 5  Simulated wheat yield 
change in mid-century (2050s) 
and end-of-century (2080s) 
under RCP 4.5 and RCP 
8.5 compared with baseline 
(1980–2009) using different 
climate models for 9 agro-
climatic zones of Uttar Pradesh. 
The point within the boxplot 
presents the mean value and 
median is given by black 
line. Here- A- ACCESS1-0, 
C- CNRM-CM5, M-MPI-
ESM-MR, N-NorESM1-M, 
R-RegCM
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Discussion

Change in Wheat Phenology Under Different 
Climate Change Scenarios

Wheat is a C3 crop and is sensitive to heat stress as well 
as carbon dioxide concentration. Results show that there 
will be a rise in  Tmax and  Tmin during the total growth 
period and yield would be decreased. Supra optimal tem-
peratures increase the risk of heat stress at critical crop 
growth stages and this sensitivity could negatively impact 
wheat production (Teixeira et  al., 2013; Wahid et  al., 

2007). Porter & Gawith, 1999 have reported that the limit 
for  Tmax for anthesis and grain filling is 31 and 35.4 °C. 
The findings of the study revealed that  Tmax during germi-
nation to terminal spikelet development, end of spikelet to 
beginning of grain filling and grain filling period in base-
line was 22, 31 & 34.7 °C respectively. In the future during 
germination to terminal spikelet  Tmax ranged from 23.6 
to 24.7 °C; 23.5 to 25 °C (the 2050s) and 24 to – 26 °C; 
25 to – 27 °C (the 2080s) under RCP 4.5 and RCP 8.5 
respectively. The  Tmax range during grain filling period 
was 35 to  – 36 °C; 35 to  − 36.5 °C (the 2050s) and 35 
to  – 36 °C; 36 to  – 37 °C (the 2080s) under RCP 4.5 and 
RCP 8.5 respectively. Concluding that the temperature in 
climate change scenario will be higher than optimum. It 
is noteworthy that wheat requires 2200 Growing Degree 
Days for crop maturity, a rise in  Tmax and  Tmin will lead to 
rapid accumulation of growing degree days reducing the 
phenological phase. There is a general agreement that a 
rise in temperature leads to a shortening of the vegetative 
growth period and total growth period of wheat (Ren et al., 
2019; Qaseem et al., 2019).

Change in Wheat Yield Under Different Climate 
Change Scenarios

Under optimum conditions, wheat crop requires a tempera-
ture of 22 °C during vegetative phase, 21 °C during repro-
ductive phase, and a threshold of 35.4 °C for grain filling 
(Porter & Gawith, 1999). A Seasonal mean temperature of 
more than 32 °C leads to death of flowers and zero yields 

Table 2  Percentage change in yield due to unit rise in weather vari-
ables obtained from regression estimates in different agro-climatic 
zones of Uttar Pradesh

The values with ‘***’ are significant at p < 0, ‘**’ at p<0.001 and 
‘*’ at p <0.05. Rainfall was not found to be significant

Zone Tmax Tmin SRAD

BKZ − 3.0*** − 5.7*** 7.2***
BTZ − 1.9** − 6.0*** 6.2***
CPZ − 2.2*** − 6.2*** 6.5***
EPZ − 2.9*** − 5.2*** 7.2***
MWPZ − 2.0* − 7.8*** 5.6***
NEZ − 1.9* − 5.6*** 5.4***
SWZ − 3.6*** − 4.1*** 7.8***
VZ − 2.5* − 8.6*** 6.3***
WPZ − 6.0* − 3.0*** 10.5***

Fig. 6  Wheat yield using penalized cubic spline against different climatic variables for nine Agro-climatic zones of Uttar Pradesh. The shaded 
region indicates 95% confidence interval
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(Asseng et al., 2015). The regression analysis revealed that 
a unit rise in Tmax and Tmin will reduce the wheat yield. 
Similar finding has also been reported by Akhter & Islam 
(2017) that there will be a 6% decrease in wheat yield with 
a unit rise in temperature. Our simulation analysis revealed 
yield reductions with zonal and modular variations. The 
findings of this study are consistent with other studies which 
have also shown a declining trend in wheat yield in differ-
ent Indian regions (Asseng et al., 2015;  Dubey et al., 2020; 
Daloz et al., 2021). Studies done by (Liu et al., 2016) have 
shown that unit rise in temperature leads to decline in wheat 
yield.

The increased  CO2 levels stimulate the growth of wheat 
plant provided that water and nutrient stress does not exist 
(Amthor, 2001). Zones like BTZ, and WPZ have shown a 
slight positive deviation in the average wheat yield. The less 
pronounced yield reduction and increase in some zones is 
due the fact that are higher concentrations of  CO2 (499, 532, 
517 and 801 ppm) increase the photosynthetic activity and 
compensating for the detrimental effects of increasing tem-
peratures. Our findings are in agreement with other studies 
that have shown a decrease in wheat yield due to a rise in 
temperature when  CO2 effects are not considered but the 
increased  CO2 concentrations have a positive effect on wheat 
yield by increased photosynthesis (Liu et al., 2019; Wang 
et al., 2020b). Here eastern UP emerged as a vulnerable zone 
in terms of yield reductions. This impact will not only affect 
the wheat production of the state but also the income of 
the stakeholders as the population is high and their major 
dependence is on agriculture (Fig. 1).

Uncertainty and Limitations of the Study

The uncertainty in yield prediction is associated with the 
crop simulation model used, choice of GCM, downscal-
ing method adopted, crop management practices, and other 
related assumptions (Lobell et al., 2012; Wang et al., 2017, 
2020a). Uncertainty can be measured by the range of poten-
tial outcomes obtained in impact assessment. For the devel-
opment of robust decision support in such studies, the use 
of multiple climate change scenarios provides reliable solu-
tions. In our study, we used 5 GCMs output (downscaled 
projections using RCMs), two emission scenarios, and two 
time periods in combination with a crop simulation model to 
quantify the range of potential outcomes. Our study revealed 
that there is clear evidence of wheat yield reductions but 
different climate scenarios revealed a wide variation in the 
impact and behavior of outcomes at the nine ACZs of UP. 
For example, when elevated  CO2 concentration were not 
considered the yield varies − 1.9 to − 20.5% and − 6 to 
− 25% in 2050 and 2080s respectively under RCP 4.5 and 
− 5.7 to − 30% and − 23% and − 41.5% in 2050s and 2080s 
respectively under RCP 8.5 among different climate models 

(Fig. 5). While an increase in yield can be seen in the case 
of elevated  CO2 concentrations. In the case of variation over 
RCP, when elevated  CO2 concentrations were not consid-
ered, the yield varied from − 7.2 to − 23.2% and − 13.2 to 
− 37.3 in the 2050 and 2080s respectively. While in the case 
of elevated  CO2 concentration it was + 1.6 to -9.3 and + 0.1 
to − 13.2 in the 2050 and 2080s respectively. This revealed 
that climate model output were the major source of uncer-
tainty in the study. Our results are consistent with other stud-
ies that have revealed that when climate impact assessments 
are done, the climate model projections are one of the driv-
ers of uncertainty (Rahman et al. 2018, Zhang et al., 2019; 
Zheng et al., 2020).

A few limitations this conundrum of assessing the 
response of wheat to climate shocks conceives are that the 
study has considered only single dominant variety of the 
state simulated on a single crop model, while other new vari-
eties and crop models may give different results. The study 
assumed no stresses from water, nutrients, pests, diseases, 
and other weather events such as heat waves, cold waves, 
and diurnal temperature rhythm (DTR). Also, there lies a 
scope for using more climate models in order to reduce the 
uncertainty of impact assessment. This study, rely on climate 
and crop model for the assessment of wheat yield in future 
climate (Maiorano et al., 2017; Tao et al., 2018; Zhang 
et al., 2019), hence optimizing different model parameters, 
improving model structure, and selecting the well-validated 
crop model best suited for regional impact study should be 
helpful.

Conclusions

All the climate projections predicted a progressive increase 
in  Tmax and  Tmin of the total growing season on an average, 
and individual months also in the 2050, 2080s, and under 
both RCP 4.5 and 8.5. The impact assessment revealed that 
the vegetative growth period of wheat will be reduced across 
all the zones by 0.4–13 days and the total growth period will 
be shortened by 0.6–17 days showing a negative impact on 
wheat phenology. This will lead to reductions in average wheat 
yield over all the nine zones ranging from 2 to 41% when 
 CO2 effect was not considered, and comparatively less reduc-
tion of 0.3–18% with consideration of  CO2 where some zones 
have shown a positive change in the yield (Fig. 5). Uncertainty 
was majorly associated with climate model outputs. It was 
revealed that ACCESS1-0 and MPI-ESM-LR have predicted 
a higher yield reduction across all the zones and scenarios 
while CNRM-CM5 has shown lower yield reductions. It was 
concluded that eastern UP represents the most vulnerable 
region for wheat production during the mid and late 21st cen-
tury within the study site. Looking at the ramifications, the 
loss in wheat yield will reduce the incomes of farmers thus 
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hampering their livelihood. The decreased production will 
affect livestock by lack of fodder or a rise in fodder prices. 
This scarcity of resources combined with an increase in the 
population of the country will require better solutions to meet 
the food demand with lesser inputs. It is noteworthy that cli-
mate resilience is driven by region-specific drivers demanding 
segregated adaptive measures. There is a dire need for appro-
priate interventions like suitable adaptation practices, adaptive 
varieties, location-specific strategies, the introduction of new 
cropping patterns, and the diversification of food basket/habits, 
etc. to be developed for UP in order to ensure food and income 
security of the region.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42106- 022- 00208-1.
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