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A B S T R A C T   

The accurate estimation of soil moisture (SM) using microwave remote sensing depends mostly on careful se-
lection of retrieval parameters among which the soil dielectric mixing model is the important one. These models 
are often categorized into empirical, semi-empirical or volumetric based on their methodologies and input data 
requirements. To study in detail, the comparative performance of four dielectric mixing models – Wang & 
Schmugge model, Hallikainen model, Dobson model and Mironov model were used with Soil Moisture Active 
Passive (SMAP) L-band brightness temperature and Single Channel Algorithm for SM retrieval over agricultural 
landscapes in India. The highest performance statistics combination in terms of Root Mean Square Error (RMSE), 
correlation coefficient (R2) and percentage bias (PBIAS) against the concurrent in-situ SM measurements were 
calculated at the selected validation sites. The overall results indicate that the best performance was given by the 
Mironov model (RMSE = 0.07 m3/m3), followed by Wang & Schmugge model (RMSE = 0.08 m3/m3), Halli-
kainen model (RMSE = 0.09 m3/m3), Dobson model (RMSE = 0.10 m3/m3) and original SMAP radiometer SM 
(RMSE = 0.12 m3/m3). Findings of this study provides important insights into application and performance of 
dielectric mixing models in mapping surface SM variations. This study also underlines the pivotal role of local 
conditions for SM retrieval which should be carefully included in the algorithms.   

1. Introduction 

Soil Moisture (SM) is a significant component of the natural hydro-
logical cycle. It was declared the “Essential Climate Variable” (ECV) in 
the year 2010 by the Global Climate Observing System. SM has extensive 
application in numerous hydro-meteorological studies including climate 
change, weather evolution, hydrological modelling and agricultural 
forecasting (Mladenova et al., 2011; Jackson, 1993). Due to its large 
spatial–temporal variations and the inability of point measurements for 
large scale spatial representation, it is very challenging to monitor SM at 
large spatial resolution using in-situ sensors (Al-Shrafany et al., 2012; 
Anav et al., 2018). However, Microwave Remote Sensing (MRS) tech-
niques, both Active and Passive approaches have offered unique op-
portunities for global SM monitoring with their advantages and 
limitations. 

The retrieval process using passive MRS depends mostly on the pa-
rameters involved such as dielectric mixing model, Land Surface Tem-
perature (LST), Vegetation Water Content (VWC) etc. Among these 
parameters dielectric mixing model is a vital part of the retrieval process 
(Mironov et al., 2004). A dielectric constant is a complex number which 
represents the electrical property of the soil and is highly dependent on 
the moisture content at microwave frequencies. Several studies cites soil 
dielectric mixing models based on soil properties such as Wensink 
(1993), Knoll and Knight (1994), Heimovaara et al. (1994), Curtis 
(2001), Nguyen et al. (1997), Hallikainen et al. (1985), Wang and 
Schmugge (1980), Dobson et al. (1985), Mironov et al. (2004). These 
models are broadly categorized as 1. Phenomenological (Cole and Cole 
model (1941), Debye relaxation model (1929) 2. Volumetric (Complex 
Refractive Index, CRI model (1974); Maxwell De Loor model (1968)) 3. 
Empirical (Wang and Schmugge (1980)) 4. Semi-empirical (Dobson 
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et al. model (1985), Mironov model) and 5. Volumetric based on the 
input data requirement (Srivastava et al., 2014; Van Dam, 2014; Van 
Dam et al., 2005). For passive-only L-band frequency-based SM retrieval 
approaches, dielectric models given by Mironov et al., Dobson et al., 
Wang &Schmugge et al., and Hallikainen et al., are reported to have the 
best performances due to their easy implementation and requirement of 
relatively fewer input parameters for calculation of various soil prop-
erties such as bulk density and sand and clay fractions compared to other 
models. 

To retrieve SM using SMAP L1C brightness temperature product, 
Single Channel Algorithm (SCA) using Horizontal polarization is 
preferred in this study. SCA is an Inverse-based, single parameter model 
(Mladenova et al., 2014). The algorithm uses single frequency/polari-
zation data, preferably the one sensitive to the SM (Jackson, 1993). SCA 
has a good heritage in SM retrieval under varying ground conditions in 
different climate regimes (Jackson, 1993; Jackson et al., 2002). The 
algorithm requires reliable ancillary data to estimate key parameters 
such as surface temperature, vegetation opacity, surface roughness and 
soil texture using local data which makes it most suitable for accurate 
SM retrieval at local scale than the global satellite SM products. SCA is 
also used as a baseline algorithm for developing SM products in SMAP 
mission and thus to present a comparative analysis on the performance 
of SMAP L3 radiometer product, developed on similar retrieval 
approach, the SCA algorithm was selected for this analysis as well. A 
detail description of the algorithm and a list various ancillary data and 

their sources is presented in the later section of this paper. Similarly, 
Microwave Polarization Difference Index (MPDI is also the most widely 
applied index used in the SM retrieval that links the effect of vegetation 
structure and cloud cover in the retrieval process (Felde, 1998). Varia-
tion in MPDI with the surface vegetation condition at all the selected 
sites is also discussed in detail in the Result section of this paper. 

In this study, four state of the art soil dielectric mixing models were 
tested for Indian conditions where SM researches are often limited due 
to complex topographic features, extremely varying climatological and 
vegetation conditions and limited in-situ SM network. The four-soil 
dielectric mixing model most suitable for SM retrieval using passive 
microwave L-band brightness temperature are further explained in 
terms of the performances. 

2. Study site and data set description 

2.1. Study site characteristics 

For this analysis, we selected three experimental sites located in 
India: Anand from Gujarat, Hoshangabad from Madhya Pradesh and 
Varanasi from Uttar Pradesh. These sites were selected mostly due to the 
easily accessible ground-based data set from the observational networks 
functioning at the selected locations. These in-situ SM data are believed 
to be crucial for validation of the output of this analysis. The charac-
teristic of the ground measured SM measurement used in this analysis is 

Hoshangabad
(M.P.)

Anand
(Gujarat)

Varanasi
(U.P.)

Fig. 1. Locations of the validation sites used in this study.  
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described in the following section of this paper. The first test site is 
situated in the Anand district of Gujarat. Anand is located in Gujarat’s 
central region and covers a total area of 2941 square kilometers. Ac-
cording to the IMD climatological data, summers in Anand are extremely 
hot, and winters are cold. The region receives most of its rainfall during 
south west monsoon season during months of June to September with an 
annual rainfall record of 799.6 mm. Sandy loam and clay loam are the 
major soil types found in Anand. The second test site is situated in 
Hoshangabad, Madhya Pradesh located in India’s central region. The 
winter season here begins in December and ends in February, with 
December being the coldest month with the lowest average minimum 
temperature followed by summer season starting from March to mid- 
June. The South West Monsoon occurs from June to September with 
an annual rainfall of 1225.9 mm. The major soil types found in Hosh-
angabad are black soils, ferruginous red lateritic soils, sandy clay loam, 
sandy loam and clay loam. The third test site is situated in the Varanasi, 
Uttar Pradesh. Varanasi’s climate is sub-humid type, with hot summers, 
mild monsoons and moderate winters. The average annual rainfall is 
1036.00 mm. The major soil types are sandy loam and clay loam. All the 
three test sites have uniform patches of crops around the sensor. Fig. 1 
below shows the location of validation sites used in this analysis. 

2.2. In-situ measurements 

The in-situ SM data were obtained from the PAN India Network 
established by Space Applications Center (SAC) India Space Research 
Organization (ISRO) including daily measurement of SM and other 
physical and electrical properties of soil such as soil temperature and 
electric conductivity at different soil depths (0–5 cm, 5–10 cm, 10–15 
cm) using Hydra probe sensors. Ground measured SM estimates at the 
selected validation sites, concurrent to SMAP overpass timings were 
preferred to be compared with retrieved SM data set using the selected 
dielectric models and SMAP radiometer SM product. Among the nine 
validation sites established across India by the ISRO’s PAN India 
network, we selected the 03 locations having Hydra probe installed and 
continuous in-situ SM data are available to maintain data uniformity. 
TheHydra probe is a rugged SM sensor which operates at 50 MHz fre-
quency. When this sensor is installed in soil, it evaluates the amplitude 
ratio of reflected waves within its probes and uses Maxwell’s numerical 
equation to compute the real dielectric permittivity of the surrounding 
soil. The volumetric water content of the soil is then empirically corre-
lated to the real dielectric permittivity. This method makes the probe 
immune to changes in soil texture, salinity, and temperature. The 
measurement zone of the sensor is 3 cm in diameter. The sensor’s ac-
curacy in all soil types is approx. 3% . The Hydra probe has also been 
used as a reliable instrument for measuring SM and other soil properties 
in different studies Chen et al., 2016, 2017; Colliander et al., 2017; Cosh 
et al., 2016; Wu and Margulis, 2013. 

2.3. Satellite data description 

2.3.1. SMAP L3 SM and LIC brightness temperature 
The SMAP Level 3 Radiometer SM product (SPL3 SM P) provides 

global land surface SM estimates retrieved from the SMAP radiometer 
brightness temperature product. The product is then gridded and made 
available at 36 km EASE spatial resolution in HDF5 format to the users. 
This product is derived using Single Channel Algorithm (SCA) imple-
mented on H-polarized brightness temperature (TB) data (Jackson et al., 
2004). We selected this data product of SMAP due to its similar retrieval 
procedure which is also followed in this study other than its continuous 
availability over the validation sites. For this study, we processed the 
SMAP L3 SM data to get daily satellite SM estimates. 

The Soil Moisture Active Passive (SMAP) L1C product is TB mea-
surements of the earth surface at Vertical (V) and Horizontal (H) po-
larizations. The SMAP L1C product is also projected using a global grid 
based on the Equal-Area Scalable Earth (EASE) Grid at 36 Km in global 

projection, north projection and south projection. This product was used 
to extract daily TB over the selected validation site for SM retrieval using 
the SCA algorithm. 

2.3.2. NASA global precipitation measurement Integrated Multi-SatellitE 
Retrievals for GPM (IMERG) 

GPM mission is a world-wide network of satellites that offer global 
observations of rain and snow with a resolution of 0.1 degrees at every 
30 min from 600N to 600S. It uses constellation of several multinational 
satellite missions such as GPM, Global Change Observation Mission- 
Water (GCOM-W1), National Oceanic and Atmospheric Administration 
(NOAA) space missions such as NOAA-18, MetOp series such Metop-A, 
and Metop-B to develop this product. To study the sensitivity of satel-
lite and retrieved SM product in natural environment towards precipi-
tation, global rainfall data set from the Global Precipitation 
Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG 
GPM) were used in this study. Daily rainfall data set were downloaded 
from the website (https://pmm.nasa.gov/data-access/downloads/ 
gpm). The data product has been very useful in recent studies such as 
Ma et al. (2019), Anjum et al. (2018), Carr et al. (2015) and Chen et al. 
(2016) to effectively assess the climatic, hydrological, and ecological 
conditions in different parts of the world by monitoring precipitation 
pattern over wide and complicated terrains. 

2.3.3. Leaf Area Index (LAI), ERA-Interim LST product and FAO soil data 
set 

The Copernicus Global Land Operation (CGLS) Leaf Area Index (LAI) 
Version 1 product has been used to estimate vegetation optical depth (τ)
using Eq. (5), explained later in detail in the methodology section of this 
paper. The LAI product is provided as 30-day composite updated at 
every ten days. The LAI products were downloaded from the web portal 
(http://land.copernicus.eu/global/products). These data sets were 
processed using ArcGIS (Version 10.3) software. 

ERA stands for the European Centre for Medium-Range Weather 
Forecasts (ECMWF) Re-Analysis and refers to the range of climate data 
sets produced as a result of series of research projects at ECMWF. The 
ECMWF skin temperature product was used to get daily Land Surface 
Temperature (LST) estimates used in this analysis. This data set refers to 
the radiometric temperature obtained from the thermal infrared 
spectrum. 

Food and Agriculture Organization (FAO) provides global soil in-
formation with 30 arc-second resolution including top and subsoil 
property estimates for 15 different parameters including organic carbon, 
sand fraction, clay fraction, silt fraction, United States Department of 
Agriculture (USDA) soil texture, Reference Bulk Density, Soil Drainage 
property and soil phase information. The database was used to extract 
the Clay–sand fraction and bulk density for SM retrieval algorithm for 
the selected study sites using Arc GIS software (Version 10.1). 

3. Methodology 

3.1. Soil dielectric mixing models 

This sub-section presents a small review of the widely used soil 
dielectric mixing models for L-band SM retrieval and used in this study 
viz. Wang &Schmugge model, Hallikainen model, Dobson model and 
Mironov model. 

Wang &Schmugge model (1980) is an empirical dielectric mixing 
model that show effects of texture on the soil water dielectric constant. 
This model was developed using the variation of soil dielectric charac-
teristics as a function of soil moisture content in various soil types and 
used the known dielectric constants or refraction indices of air, water, 
and ice, as well as the volume percent of each ingredient, to compute the 
dielectric constant of the soil. Hallikainen et al.,(1985) dielectric model 
is an empirical mixing model that estimates the dielectric constant of soil 
-water mixture more precisely and accurately over frequency 1–18 GHz 
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for different soil types based on specified soil physical characteristics. 
The microwave dielectric constant of the soil in this model is represented 
as functions of SM content, physical temperature and soil texture. 
Dobson et al. model (1985) is a semi-empirical dielectric mixing model 
based on the refractive index requiring readily available soil physical 
parameter’s information such as volumetric SM content (mv), bulk 
density (ρb) and percentage of sand (S) and clay (C) fraction. Mironov 
Mixing model is a generalized refractive dielectric mixing model 
(GRMDM) suitable for a comprehensive range SM, soil type and fre-
quency (Mironov et al., 2004). This model introduced the concept of the 

intrinsic bound soil water (BSF) and free-soil water (FSW) and the 
complex dielectric constant (CDC) fitting method. A detail description of 
the above-mentioned dielectric models by the authors in this paper with 
their working formulas and studies citing their application has been 
recently published in Soil Moisture Product Validation, Best Practice 
Protocol released by NASA (Montzka et al., 2020) 

3.2. Single Channel Algorithm for SM retrieval 

For correction of vegetation parameters such as Vegetation Water 
Content (VWC), the SCA algorithm uses ancillary information such as 
Normalized Difference Vegetation Index (NDVI) or Leaf Area Index 
(LAI), and other data such as Land cover, LST, Soil information. Table 1 
enlists all the ancillary data and their source for SM retrieval used in this 
analysis. SCA assumes the single scattering albedo, ῳ = 0 and minimal 
atmospheric contribution. The expression for TB is presented as 

TB(f ,p) = Ts
{

1 −
(
1 − es,rough

) (
e
[ − τ
cosθ

] ) 2
}

(1)  

where TB = brightness temperature, p = polarization, Ts = surface 
physical temperature, es,rough = rough surface emissivity, τ = vegetation 
optical depth and θ = angel of incidence. 

Considering all assumptions, reflectivity equation for smooth surface 
can be presented as 

Table 1 
Ancillary Data and sources used in this study.  

Parameters Description/Data Sources 

Soil Temperature European Centre for Medium Range Weather Research 
Forecast (ECMWF) Forecast Temperature 

Vegetation Water 
Content (VWC) 

European Space Agency (ESA) Copernicus Global Land 
Operation (CGLS) Leaf Area Index (LAI) 

Sand and Clay Fraction Food and Agriculture Organisation (FAO) Harmonized 
World Soil Data set (HWSD) 

Precipitation NASA Global Precipitation Measurement Integrated 
Multi-SatellitE Retrievals for Global Precipitation Mission 
(GPM) (IMERG) 

Land Cover Class Moderate Resolution imaging Spectroradiometer 
(MODIS) International Geosphere-Biosphere Program 
(IGBP) Combined Land Cover Product  

Fig. 2. Methodology followed in this study.  
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Rsmooth(f ,p) =

{(

1 −

(
TB(f ,p)

Ts

))

e

[

hcos2θ+2b∗VWCcosθ

] ⎫
⎪⎬

⎪⎭
(2) 

In the above equation Rs,smooth
(f ,p) = smooth surface reflectivity, Ts =

surface temperature, VWC = Vegetation Water Content, θ = angel of 
incidence. 

The SCA-H model requires soil texture and land use/land cover 
patterns which were obtained using gravimetric methods, soil cover 
maps and on-site inspections. 

Tau-omega (τ − ω) is considered as the approximate form of radia-
tive transfer equation , which is based on two parameters, the vegetation 
optical depth, τ and the vegetation scattering albedo, ω. These two 
variables are used to parametrize the vegetation attenuation properties 
and the scattering effects. Low vegetation, τ − ω model is expressed as 

TBp = (1 − ω)
(
1 − γp

) (
1 + γprgp

)
Tc +

(
1 − rgp

)
γpTg (3)  

where Tg and Tc are the effective soil and vegetation temperatures, p 
represents particlular polarization, rgp is the soil reflectivity, ωp is the 
single scattering albedo, ɣp is the vegetation attenuation factor; derived 
from the τp using the formula 

γp = exp
(
− τp

/
cosθ

)
(4)  

where the optical depth, τp is calculated using formula 

τp = bp ∗ VWC (5)  

where bp is the crop factor (Jackson and Schmugge, 1991). 
For the surface temperature, it is assumed that the effective soil (Tg) 

and vegetation temperature (Tc) are approximately equal to a single 
value 

Tgc ≈ Tc ≈ Tg (6)  

where Tgc is the surface temperature including both soil and vegetation 
and is derived using the formula 

Tgc = AtTc+(1 − At)Tg (7)  

where, At = Bt(1 − exp(τNAD) ), τNAD is VOD at the nadir point. 
The methodology followed in this analysis is shown in Fig. 2. In 

summary, we applied the above-mentioned soil dielectric mixing models 

with the SCA algorithm using the SMAP L1C TB product to retrieve 
surface SM estimates at the chosen validation sites located around vast 
uniform patches of agricultural land and analyzed their performance 
with in-situ data using performance statistics to obtain high perfor-
mance SM product. Also, to study the sensitivity of the satellite and 
retrieved SM products in natural environment, we used high resolution 
NASA GPM IMERG precipitation data and studied their behavior over 
the time period of this study. 

3.3. Performance statistics 

To assess the performance of the dielectric models used in this study 
we used 3 performance statistics widely used to compare the model 
performance such as Root Mean Square Error (RMSE), Square of Cor-
relation (R2) and Percentage Bias (PBIAS). Based on the results , per-
formance of these models for each site is presented in detail . 

The RMSE estimates the standard deviation of the model prediction 
error and measures the average magnitude of the error. A small RMSE 
value indicates better model performance whereas a higher value in-
dicates a poor performance of the model. The formula for calculating 
RMSE is shown as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(yi − xi)2

N

√
√
√
√ (8)  

where, x and y are the observed and simulated data set respectively and 
N is total number of observations. 

Square of Correlation (R2) represents the strength of the linear as-
sociation between two variables and its value ranges between − 1 and 1 
representing a prefect a negative and positive correlation respectively. 
Values near to 1 represents strong correlation. The formula for calcu-
lating correlation can be represented as 

R2 = 1 −

∑N
i=1 [yi − xi]2

∑N
i=1 [xi − xi]2

(9)  

where, x and y are the observed and simulated data set respectively, N is 
the total number of observations and x is the mean of x. 

The PBIAS is used to estimate the average bias in the simulated 
values and its optimal value is 0.0 which indicates the ideal model 
simulation. PBIAS value greater than 0 represents an overestimation 
whereas lesser value indicates an underestimation bias. The equation for 
PBIAS is written as 

Fig. 3. Graph showing variation in TBV, TBH (using primary Y-axis on the left side) and LST (using secondary Y-axis on the right side) over the entire study period 
for Anand, Gujarat. 
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PBIAS = 100*
∑N

i=1(yi − xi)
∑N

i=1xi
(10)  

where, x and y are the observed and simulated data set respectively and 
N is the total number of observations. 

4. Result and discussion 

In this section, a detailed description about the behavior of SM 
retrieval parameters– LST, TB, LAI, MPDI and performance of the SM 
retrieval algorithm in estimating SM for each experimental site is 
presented. 

For studying the seasonal variation in the retrieval parameters , 
especially for the LST and TB, we selected the four seasons defined by 
the Indian Meteorological Department (IMD), Government of India; 
Winter (December–February), Summer (March–May), Monsoon 

(June–September) and Post-Monsoon (October–November). Also, to 
understand the variation in the vegetation parameters – VWC and MPDI 
, we considered the two cropping seasons used for agriculture in India i. 
e. Kharif or Monsoon crops (July–October) and Rabi or winter crops 
(October–March) (Indian Meteorological Department; IMD, Govern-
ment of India). 

4.1. Anand, Gujarat 

4.1.1. Temporal behavior of TB and SM retrieval parameters at the station 
Anand has a tropical type of climate where average temperature rises 

at peak during months of April – May and precipitation here is influ-
enced by the monsoon climate of India. To study the variation in LST and 
TB at H-polarization (TBH) and V-polarization (TBV), we used a tem-
poral plot as shown in Fig. 3.The average LST during the whole study 
period (June 2017–May 2018) was reported to be around 298 K and not 

Fig. 4. Graph showing variation in VWC and MPDI over the entire study period for Anand, Gujarat.  

Fig. 5. Scatterplot between In-situ, SMAP SM, GPM rainfall at the Anand, Gujarat for (a) RET SM M, (b) RET SM D, (c) RET SM H, (d) RET SM WS.  
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much variation can be noticed unlike the TBV (av. = 250 K) and TBH 
(av. = 221 K) where a significant decrease was noted during monsoon 
season (July–September) was observed. 

From Fig. 4 an increasing trend in VWC can be noticed during the 
starting phase of the study period, during June–July 2017 and reaching 
its maximum value during August–September could be related to sow-
ing, growing and maturing phases of the Kharif crops such as rice millet 
and groundnuts predominantly grown in the regions. A decreasing trend 
was observed during October–November may be due to harvesting of the 
crops. Again, an increasing trend can be observed in VWC during winter 
months i.e. January–February 2018, due to growth of Rabi crops 
(Wheat, barley and cereals), decreasing post-March indicating harvest-
ing of the Rabi crops and end of the agricultural year at the site. MPDI 
can also be noticed increasing during June–-August 2017 and reaching 
at its maximum during September with high SM content during 
monsoon and low VWC during early growing stage of crops. A constant 
trend postMarch indicating harvesting of the Rabi crops and end of the 
agricultural year at the site. 

4.1.2. Performance comparison at the Anand station 
At Anand, Mironov model (RMSE = 0.03, R2 = 0.68, PBIAS = 5.0) 

performed best in retrieving SM estimates than Dobson model (RMSE =
0.03, R2 = 0.63, PBIAS = − 5.40), Wang &Schmugge (RMSE = 0.04, R2 

= 0.61, PBIAS = 4.80) and Hallikainen model (RMSE = 0.04, R2 = 0.51, 
PBIAS = 12.0). All the models performed better than the SMAP SM 
(RMSE = 0.09, R2 = 0.34, PBIAS = 43.60) when compared against the 
in-situ SM values and in mapping surface SM changes at the site. PBIAS 
results showed an overestimation by Wang &Schmugge model (PBIAS =
4.80), Mironov model (PBIAS = 5.0), Hallikainen model (PBIAS = 12.0) 
and SMAP SM (PBIAS = 43.60) while an underestimation by Dobson 
model (PBIAS = − 5.40). Scatter plot between the in-situ SM, SMAP SM, 
retrieved SM using Mironov dielectric model (RET SM M) is presented in 
Fig. 5 (a) along with retrieved SM using Dobson dielectric model (RET 
SM D) in Fig. 5(b), retrieved SM using Hallikainen dielectric model (RET 
SM H) in Fig. 5(c), retrieved SM using Wang & Schmugge dielectric 
model (RET SM WS) in Fig. 5(d). Results of the performance analysis is 
shown in Table 2. 

4.1.3. Temporal consistency at the station 
For Anand, Fig. 6 (a) presents the temporal series plot between in- 

situ SM, Mironov retrieved SM (RET SM M), SMAP SM and GPM rain-
fall and Fig. 6(b) for Dobson model retrieved SM (RET SM D) over Anand 
between June 2017–May 2018. Heavy rainfall can be seen during 
July–September 2017 and also few days of significant downpour during 
January and February 2018. During these days in-situ SM reached at its 
maximum values due rainfall and resulting increased SM content. SMAP 
SM can be seen overestimating the in-situ SM but responding well to the 
sudden moisture change at the site. During the entire study period, RET 
SM M overestimated the in-situ SM but can be seen in close approxi-
mation to the observed SM compared to the SMAP SM. A gap in the 

Table 2 
Results of comparison of different Dielectric Models used in this study at Anand 
Gujarat, India.  

Statistical 
test 

SMAP 
SM 

Mironov Dobson Hallikainen Wang & 
Schmugge 

Square of 
Correlation 
(R2)  

0.34  0.68  0.63  0.51  0.61 

RMSE (m3/ 
m3)  

0.09  0.03  0.03  0.04  0.04 

PBIAS  43.60  5.0  − 5.40  12.0  4.80  

Fig. 6. Temporal plot between In-situ, SMAP SM, GPM rainfall at the Anand, Gujarat for (a) RET SM M, (b) RET SM D.  
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retrieved SM can be observed during the days of heavy rainfall due to 
limitation of these models in capturing this sudden change on local 
environment and extreme weather conditions resulting repeated value 
at the upper value of SM range considered for the analysis. In Fig. 6(b) 
Dobson retrieved SM (RET SM D) can also be seen producing SM esti-
mates close to the in-situ SM but can also be noticed to be under-
estimating the observed SM during some days in July November, 
December 2017 and at the last phase of the study period; March–May 
2018 showing a saturated value to the lower limit considered for the 

simulation. 
Fig. 7(a) and (b) shows the daily performance of the Hallikainen 

retrieved SM (RET SM H) and Wang &Schmugge retrieved SM (RET SM 
W) with in-situ SM, SMAP SM and its response to the precipitation 
represented by the GPM rainfall respectively. The Hallikainen retrieved 
SM overestimated the in-situ SM for a significant period from August 
2017 to February 2018 and during the few days of March and April 
2018. Wang &Schmugge model also overestimated the ground 
measured SM during August 2017 to February 2018 and few days during 

Fig. 7. Temporal plot between In-situ, SMAP SM, GPM rainfall at the Anand, Gujarat for (a) RET SM H, (b) RET SM W.  

Fig. 8. Graph showing variation in TBV,TBH (using primary Y-axis on the left side) and LST (using secondary Y-axis on the right side) over the entire study period for 
Hoshangabad, M.P. 
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March 2018 and then limited to the lowest SM limit during April–May 
2018. At Anand, Mironov and Hallikainen models were more efficient in 
mapping SM variation under natural condition than Dobson and Wang & 
Schmugge . 

4.2. Hoshangabad, Madhya Pradesh 

4.2.1. Temporal behavior of TB and SM retrieval parameters at the 
Hoshangabad station 

The temporal plot between TBV, TBH and LST for the Hoshangabad 
is shown in Fig. 8. The average LST from July 2017 to April 2018 was 
298 K whereas for TBV was 267 K and TBH was 243 K. TB could be 
noticed lowest from June to September 2017 probably due to rainfall 
during monsoon season. Temperature was marked gradually increasing 

Fig. 9. Graph showing variation in VWC and MPDI over the entire study period for Hoshangabad, M.P.  

Table 3 
Results of comparison of different Dielectric Models used in this study at 
Hoshangabad, M.P., India.  

Statistical 
test 

SMAP 
SM 

Mironov Dobson Hallikainen Wang & 
Schmugge 

Square of 
Correlation 
(R2)  

0.84  0.70  0.76  0.74  0.78 

RMSE (m3/ 
m3)  

0.13  0.10  0.13  0.11  0.10 

PBIAS  − 28.10  − 18.10  − 26.10  − 22.50  − 18.70  

Fig. 10. Scatterplot between In-situ, SMAP SM, GPM rainfall at the Hoshangabad, M.P. for (a) RET SM M, (b) RET SM D, (c) RET SM H, (d) RET SM WS.  
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and getting its peak during April 2018 due to summer season. 
Fig. 9 presents temporal variation in VWC and MPDI over Hoshan-

gabad. VWC can be seen gradually increasing during sowing and growth 
stages for both the seasons (Kharif during July-September and Rabi 
crops during November 2017–January 2018), highest VWC is evident at 
their mature stage i.e. between September 2017 and February 2018 
respectively. Low values can be noticed during the end of both the 
cropping seasons indicating harvesting of the crops. MPDI was recorded 
highest during starting stage and prevailing monsoon at the site while 
gradually decreasing with the increase in VWC during the rest of the 
time period. 

4.2.2. Performance comparison at the station 
Results of the statistical tests show the best performance by Mironov 

(RMSE = 0.10) and Wang & Schmugge model (RMSE = 0.10) with less 
error compared to Hallikainen model (RMSE = 0.11) and Dobson model 
(RMSE = 0.13) but based on the correlation between the retrieved SM 
and in-situ SM; Wang &Schmugge model (R2 = 0.78) performed slightly 
better than Dobson model (R2 = 0.76,) followed by Hallikainen model 
(R2 = 0.74) and Mironov model (R2 = 0.70). SMAP SM (RMSE = 0.13, 
R2 = 0.84, PBIAS = − 28.10) marginally performed better in retrieving 
the SM estimates at the site compared all other models. Interestingly all 
models as well satellite SM showed an underestimating pattern in 
retrieval; Mironov model (PBIAS = − 18.10), Wang & Schmugge model 
(PBIAS = − 18.70), Hallikainen model (PBIAS = − 22.50), Dobson model 
(PBIAS = − 26.10), when compared with the in-situ measured values. 
Results are presented in Table 3 while the scatter plots between the data 
sets; in-situ SM, SMAP SM retrieved SM using Mironov dielectric model 
(RET SM M) is presented in Fig. 10(a) along with retrieved SM using 
Dobson dielectric model (RET SM D) in Fig. 10(b), retrieved SM using 
Hallikainen dielectric model (RET SM H) in Fig. 10(c), retrieved SM 

using Wang & Schmugge dielectric model (RET SM WS) in Fig. 10(d). 

4.2.3. Temporal consistency at the station 
Fig. 11(a) and (b) show the temporal performance of Mironov and 

Dobson dielectric models in SM retrieval compared to in-situ SM, SMAP 
SM and GPM rainfall during July 2017 to April 2018 over Hoshangabad, 
M.P. For the entire span of this study, all-dielectric models retrieved SM 
estimates and SMAP SM show underestimated SM measurements. Still, 
Mironov retrieved SM (RET SM M) performed better, whereas Dobson 
retrieved SM (RET SM) showed a similar pattern as SMAP SM. A closer 
approximation between Mironov SM and in-situ SM values can be 
noticed during January–April 2018. Significant of rainfall can be seen 
during July–September 2017 and also during November, January and 
March months. 

Hallikainen and Wang & Schmugge also performed well at Hosh-
angabad in mapping surface SM variation. Hallikainen derived SM es-
timate had a similar variation trend as SMAP SM. In contrast, Wang & 
Schmugge model performed better than SMAP SM and retrieved SM 
estimates can be noticed closer to the in-situ SM estimates during the 
entire study period. The temporal plot for Hallikainen retrieved SM with 
in-situ SM, SMAP SM, and GPM rainfall is shown in Fig. 12(a) and for 
Hallikainen and Wang & Schmugge model in Fig. 12(b) respectively. 

4.3. Varanasi, Uttar Pradesh 

4.3.1. Temporal behavior of TB and SM retrieval parameters at the 
Varanasi station 

The average TBV recorded at Varanasi was 268 K whereas for TBH it 
was 233 K and LST 300 K during June 2017–May 2018. LST at the site 
looks uniform except a slight decrease during winter months, December 
2017–March 2018. A decreasing trend in TBV and TBH was noticed 

Fig. 11. Temporal plot between In-situ, SMAP SM, GPM rainfall at the Hoshangabad, M.P for (a) RET SM M, (b) RET SM D.  
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during the monsoon and winter months. The temporal plot between 
TBV, TBH and LST for Varanasi site is presented in Fig. 13. 

VWC can be noticed increasing during June and reaching at its peak 
during July–September 2017 due to maturing of the Kharif crops at the 
site and slowly decreasing during October–November 2017 with the 
harvesting of the crop’s indicating less agricultural activities at the site. 
An increasing VWC can be noted again during December 2017 and 
reaching its peak during December 2017–February 2018. MPDI can also 
be seen as varying in a similar pattern with VWC. An increasing trend in 
MPDI can be seen with the sowing and growth of crops and maximum 

during its mature stage in the both the cropping seasons. A temporal plot 
between VWC and MPDI for the Varanasi is presented in Fig. 14. 

4.3.2. Performance comparison at the station 
At Varanasi, Mironov model (RMSE = 0.08, R2 = 0.82, PBIAS =

− 19.60) performed better than Wang & Schmugge (RMSE = 0.09, R2 =

0.81, PBIAS = − 23.20), Hallikainen model (RMSE = 0.10, R2 = 0.79, 
PBIAS = − 26.40) and Dobson model (RMSE = 0.11, R2 = 0.79, PBIAS =
− 29.80). PBIAS results showed an underestimation by the retrieved and 
satellite SM data sets compared to the in-situ data estimates. SMAP SM 

Fig. 12. Temporal plot between In-situ, SMAP SM, GPM rainfall at the Hoshangabad, M.P for (a) RET SM H, (b) RET SM W.  

Fig. 13. Graph showing variation in TBV,TBH (using primary Y-axis on the left side) and LST (using secondary Y-axis on the right side) over the entire study period 
for Varanasi, UP. 
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also performed well but less than the soil dielectric mixing models 
retrieved SM at the site with RMSE = 0.12, R2 = 0.53 and PBIAS =
− 27.90. Scatter plot between the in-situ SM, SMAP SM, retrieved SM 
using Mironov dielectric model (RET SM M) is presented in Fig. 15(a) 
along with retrieved SM using Dobson dielectric model (RET SM D) in 
Fig. 15(b), retrieved SM using Hallikainen dielectric model (RET SM H) 
in Fig. 15(c), retrieved SM using Wang & Schmugge dielectric model 
(RET SM WS) in Fig. 15(d). Results of the performance of the dielectric 
models and SMAP SM is presented in Table 4. 

4.3.3. Temporal consistency at the station 
For Varanasi, Fig. 16(a) present the temporal series plot between in- 

situ SM, Mironov retrieved SM (RET SM M), SMAP SM and GPM rainfall 
and Fig. 16(b) for Dobson model retrieved SM (RET SM D) over Varanasi 
during June 2017–May 2018. Heavy precipitation can be observed 
during June–October 2017 and during few days of February and April 
2018. At Varanasi, all the retrieved and satellite SM underestimated the 
ground measured SM estimates, but the SM estimates retrieved using 
dielectric models performed better the SMAP. However, it’s interesting 
to notice a similar pattern of all the simulated SM variation in natural 

Fig. 14. Graph showing variation in VWC and MPDI over the entire study period for Varanasi, UP.  

Fig. 15. Scatterplot between In-situ, SMAP SM, GPM rainfall at the Varanasi, UP for (a) RET SM M, (b) RET SM D, (c) RET SM H, (d) RET SM WS.  
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environmental condition using passive microwave approaches, espe-
cially under prevailing climatic extremes. Although, all the dielectric 
models performed better the SMAP SM, Mironov marginally had better 
performance than the other models– Dobson model, Hallikainein model, 
Wang & Schmugge model with better correlation between observed and 
simulated data set, less bias and lesser RMSE. 

Fig. 17(a) presents the temporal plot between in-situ SM, Hallikainen 
retrieved SM (RET SM H), SMAP SM and GPM rainfall data while Fig. 17 
(b) shows plot between in-situ SM, Wang & Schmugge retrieved SM 
(RET SM WS), SMAP SM and GPM rainfall estimates. 

4.4. Performance of Pooled data sets of all the three sites 

This sub-section presents the overall performance of the dielectric 
models selected for this study at all the sites. Results of the statistical 
tests are summarized in Table 5. Based on RMSE scores for all the 
dielectric models used in this analysis, the Mironov model (RMSE =
0.07 m3/m3) showed best performance than the Wang & Schmugge 
model (RMSE = 0.08 m3/m3), Hallikainen model (RMSE = 0.09 m3/m3) 
and Dobson model (RMSE = 0.10 m3/m3) at the validation sites . SMAP 
radiometer SM product also performed well (RMSE = 0.12 m3/m3) at 
these sites. Also, SM estimates derived using Mironov model showed the 

highest correlation with the in-situ data set (R2 = 0.80) followed by the 
Wang & Schmugge model (R2 = 0.74), Dobson model (R2 = 0.72), 
Hallikainen model (R2 = 0.67) and SMAP SM (R2 = 0.57). SMAP SM 
showed the least bias when compared with ground measured SM (PBIAS 
= − 11.8) at the sites followed by Mironov model (PBIAS = − 16.3), 
Wang model (PBIAS = − 18.8), Hallikainen (PBIAS = − 21.8) and highest 
by Dobson model (PBIAS = − 32.9) however all the retrieved and sat-
ellite SM showed an underestimating pattern for the entire span of this 
analysis at all the sites. 

5. Conclusion 

Accurate and efficient retrieval of SM using passive microwave data 
depends mainly on careful selection of retrieval parameter such as Soil 
dielectric mixing models, VWC, LST etc. This study provides a detail 
analysis of the behavior of these parameters and also their role in SM 
retrieval. Many dielectric mixing models have been reported previously 
but their practical application was often limited due their complex 
methodologies, site-specific applicability and lack of continuous in-situ 
data set to assess their performance. As such this study presents a 
detailed summary of some of the most widely used dielectric mixing 
models and present their performances in SM retrieval and reports first 
of a kind of analysis over Indian agricultural sites. Results of this analysis 
shows promising performance of Mironov dielectric model in SM 
retrieval at all selected sites and also exhibit comparatively better per-
formances of all the dielectric models selected in this study than the 
global SMAP L3 SM product in accurately predicting the surface SM 
content. This study also highlights limitation and performance of sat-
ellite SM product and passive microwave retrieval approaches for 
widely varying climatic and vegetation condition prevailing in tropical 
countries like India. 

This study underlines the significance of long term in-situ SM data in 
satellite measurement of surface SM. The ground-based or in-situ SM 
networks are believed to play an essential role in this study as they are 

Table 4 
Results of comparison of different Dielectric Models used in this study at Vara-
nasi, U.P., India.  

Statistical 
test 

SMAP 
SM 

Mironov Dobson Hallikainen Wang & 
Schmugge 

Square of 
Correlation 
(R2)  

0.53  0.82  0.79  0.79  0.81 

RMSE (m3/ 
m3)  

0.12  0.08  0.11  0.10  0.09 

PBIAS  − 27.90  − 19.60  − 29.80  − 26.40  − 23.20  

Fig. 16. Scatterplot between In-situ, SMAP SM, GPM rainfall at the Varanasi, UP for (a) RET SM M, (b) RET SM D.  
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the mainstay in calibration and validation land surface models and vital 
in the assessment of the quality of SM products from spaceborne SM 
missions. Since accurate SM measurements are believed to play a crucial 
role in minimizing the economic and social losses due to extreme 
weather events like flood and drought, losses due to crop failures, 
minimizing wastage of freshwater resources through irrigation sched-
uling and many more advantages including a better understanding of 
significant hydrological and environmental processes, this study also 
recommends framing a roadmap for establishing more dense ground- 
based SM network, as developed at some of the study sites of this 
investigation. 

In terms of SM retrieval, the MPDI has a lot of potential, especially 
for sparse or moderate vegetation surface conditions. It is one of the 
most often used vegetation indicators because of its crucial role in 
assessing surface structure, moisture content, and roughness in various 
terrain types. With SM, MPDI increases, while with VWC, it decreases. 
We noticed a similar pattern of fluctuation in these three parameters at 
all of our chosen sites. Surface temperature variations can also have a 
significant impact on MPDI. As a result, this study demonstrates use 
MPDI to determine the prevailing vegetation conditions for precise SM 
retrievals. 

Although in this study, we used SCA algorithm for the SM retrieval 

process, more robust and efficient approaches can be developed by 
testing efficiency of other retrieval algorithms such as dual-channel or 
Microwave Polarization Ration Algorithm (MPRA) based on Land 
Parameter Retrieval Model (LPRM) and other dielectric mixing models 
for better results. Results of this would be useful in developing high 
performance finer resolution SM product. 
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RMSE (m3/m3) R2 PBIAS RMSE (m3/m3 R2 PBIAS RMSE (m3/m3 R2 PBIAS RMSE (m3/m3 R2 PBIAS 

SMAP  0.09  0.34  43.60  0.13  0.84 − 28.10  0.12  0.53 − 27.90  0.12  0.57 − 11.8 
Mironov  0.03  0.68  5.0  0.10  0.70 − 18.10  0.08  0.82 − 19.60  0.07  0.80 − 16.3 
Dobson  0.03  0.63  − 5.40  0.13  0.76 − 26.10  0.11  0.79 − 29.80  0.10  0.72 − 32.9 
Hallikainen  0.04  0.51  12.0  0.11  0.74 − 22.50  0.10  0.79 − 26.40  0.09  0.67 − 21.8 
Wang & Schmugge  0.04  0.61  4.80  0.10  0.78 − 18.70  0.09  0.81 − 23.20  0.08  0.74 − 18.80  

S. Suman et al.                                                                                                                                                                                                                                  



Journal of Hydrology 602 (2021) 126673

15

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

Authors wish to thank Space Applications Center (SAC), Indian Space 
Research Organization (ISRO), India for providing in-situ data and their 
funding. Also, to all the co-authors for their valuable contribution and 
suggestions. The authors would also like to express their gratitude to the 
editor and anonymous reviewers for their constructive comments and 
feedback in developing this work. 

References 

Al-Shrafany, D., Rico-Ramirez, M.A., Han, D., 2012. Calibration of roughness parameters 
using rainfall–runoff water balance for satellite soil Moisture retrieval. J. Hydrol. 
Eng. 17 (6), 704–714. 

Anav, A., Proietti, C., Menut, L., Carnicelli, S., De Marco, A., Paoletti, E., 2018. 
Sensitivity of stomatal conductance to soil moisture: implications for tropospheric 
ozone. Atmos. Chem. Phys. 18 (8), 5747–5763. 

Anjum, M.N., Ding, Y., Shangguan, D., Ahmad, I., Ijaz, M.W., Farid, H.U., et al., 2018. 
Performance evaluation of latest integrated multi-satellite retrievals for Global 
Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. 
Res. 205, 134–146. 

Carr, N., Kirstetter, P.-E., Hong, Y., Gourley, J., Schwaller, M., Petersen, W., et al., 2015. 
The influence of surface and precipitation characteristics on TRMM Microwave 
Imager rainfall retrieval uncertainty. J. Hydrometeorol. 16 (4), 1596–1614. 

Chen, D., Tian, Y., Yao, T., Ou, T., 2016. Satellite measurements reveal strong anisotropy 
in spatial coherence of climate variations over the Tibet Plateau. Sci. Rep. 6 (1), 1–9. 

Chen, F., Crow, W.T., Colliander, A., Cosh, M.H., Jackson, T.J., Bindlish, R., Reichle, R. 
H., Chan, S.K., Bosch, D.D., Starks, P.J., Goodrich, D.C., Seyfried, M.S., 2017. 
Application of triple collocation in ground-based validation of Soil Moisture Active/ 
Passive (SMAP) level 2 data products. IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. 
10 (2), 489–502. 

Cole, K.S., Cole, R.H., 1941. Dispersion and absorption in dielectrics I. Alternating 
current characteristics. J. Chem. Phys. 9 (4), 341–351. 

Colliander, A., Cosh, M.H., Misra, S., Jackson, T.J., Crow, W.T., Chan, S., Bindlish, R., 
Chae, C., Holifield Collins, C., Yueh, S.H., 2017. Validation and scaling of soil 
moisture in a semi-arid environment: SMAP validation experiment 2015 
(SMAPVEX15). Remote Sens. Environ. 196, 101–112. 

Cosh, M.H., Ochsner, T.E., McKee, L., Dong, J., Basara, J.B., Evett, S.R., Hatch, C.E., 
Small, E.E., Steele-Dunne, S.C., Zreda, M., Sayde, C., 2016. The soil moisture active 
passive Marena, Oklahoma, in-situ sensor testbed (smap-moisst): Testbed design and 
evaluation of in-situ sensors. Vadose Zo. J. 15 (4), 1–11. 

Curtis, J.O., 2001. Moisture effects on the dielectric properties of soils. IEEE Trans. 
Geosci. Remote Sens. 39 (1), 125–128. 

Debye, P.J.W., 1929. Polar Molecules. Chemical Catalog Company Incorporated. 
Dobson, M., Ulaby, F., Hallikainen, M., El-rayes, M., 1985. Microwave dielectric 

behavior of wet soil-Part II: dielectric mixing models. IEEE Trans. Geosci. Remote 
Sens. 35–46. 

Felde, G.W., 1998. The effect of soil moisture on the 37GHz microwave polarization 
difference index (MPDI). Int. J. Remote Sens. 19 (6), 1055–1078. 

Hallikainen, M., Ulaby, F., Dobson, M., El-rayes, M., Wu, L.-K., 1985. Microwave 
dielectric behavior of wet soil-part 1: empirical models and experimental 
observations. IEEE Trans. Geosci. Remote Sens. GE-23 (1), 25–34. 

Heimovaara, T.J., Bouten, W., Verstraten, J.M., 1994. Frequency domain analysis of time 
domain reflectometry waveforms: 2. A four-component complex dielectric mixing 
model for soils. Water Resour. Res. 30 (2), 201–209. 

Jackson, T.J., 1993. III. Measuring surface soil moisture using passive microwave remote 
sensing. Hydrol. Process. https://doi.org/10.1002/hyp.3360070205. 

Jackson, T.J., Hsu, A.Y., O’Neill, P.E., 2002. Surface soil moisture retrieval and mapping 
using high-frequency microwave satellite observations in the Southern Great Plains. 
J. Hydrometeorol. 3 (6), 688–699. 

Jackson, T.J., Hurkmans, R., Hsu, A., Cosh, M.H., 2004. Soil moisture algorithm 
validation using data from the Advanced Microwave Scanning Radiometer (AMSR-E) 
in Mongolia. 

Jackson, T.J., Schmugge, T.J., 1991. Vegetation effects on the microwave emission of 
soils. 

Knoll, M.D., Knight, R., 1994. Relationships between dielectric and hydrogeologic 
properties of sand–clay mixtures. Fifth International Conference on Ground 
Penetrating Radar 45–61. 

Loor, G.P.d., 1968. Dielectric properties of heterogeneous mixtures containing water. 
J. Microw. Power 3 (2), 67–73. 

Ma, L.u., Zhao, L., Tian, L.-M., Yuan, L.-M., Xiao, Y., Zhang, L.-l., Zou, D.-f., Qiao, Y.-P., 
2019. Evaluation of the integrated multi-satellite retrievals for global precipitation 
measurement over the Tibetan Plateau. J. Mount. Sci. 16 (7), 1500–1514. 

Mironov, V.L., Dobson, M.C., Kaupp, V.H., Komarov, S.A., Kleshchenko, V.N., 2004. 
Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. 
Remote Sens. 42 (4), 773–785. 

Mladenova, I., Lakshmi, V., Jackson, T.J., Walker, J.P., Merlin, O., de Jeu, R.A.M., 2011. 
Validation of AMSR-E soil moisture using L-band airborne radiometer data from 
National Airborne Field Experiment 2006. Remote Sens. Environ. https://doi.org/ 
10.1016/j.rse.2011.04.011. 

Mladenova, I.E., Jackson, T.J., Njoku, E., Bindlish, R., Chan, S., Cosh, M.H., Holmes, T.R. 
H., de Jeu, R.A.M., Jones, L., Kimball, J., Paloscia, S., Santi, E., 2014. Remote 
monitoring of soil moisture using passive microwave-based techniques—theoretical 
basis and overview of selected algorithms for AMSR-E. Remote Sens. Environ. 144, 
197–213. 

Montzka, C., Cosh, M., Bayat, B., Al Bitar, A., Berg, A., Bindlish, R., et al., 2020. Soil 
Moisture Product Validation Good Practices Protocol Version 1.0. Good Practices for 
Satellite Derived Land Product Validation, pp. 123. 

Nguyen, B., Geels, A.M., Bruining, J., Slob, E.C., 1997. Calibration measurements of 
dielectric properties of porous media. SPE Journal 4, 353–359. 

Srivastava, P.K., O’Neill, P., Cosh, M., Kurum, M., Lang, R., Joseph, A., 2014. Evaluation 
of dielectric mixing models for passive microwave soil moisture retrieval using data 
from ComRAD ground-based SMAP simulator. IEEE J Sel. Top. Appl. Earth Obs. 
Remote Sens. 8 (9), 4345–4354. 

Van Dam, R.L., 2014. Calibration functions for estimating soil moisture from GPR 
dielectric constant measurements. Commun. Soil Sci. Plant Anal. 45 (3), 392–413. 

Van Dam, R.L., Borchers, B., Hendrickx, J.M.H., 2005. Methods for prediction of soil 
dielectric properties: a review. In: Detection and Remediation Technologies for 
Mines and Minelike Targets X. International Society for Optics and Photonics, 
pp. 188–197. 

Wang, J.R., Schmugge, T.J., 1980. An empirical model for the complex dielectric 
permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 
288–295. 

Wensink, W.A., 1993. Dielectric properties of wet soils in the frequency range 1–3000 
MHz. Geophysical Prospecting 41, 671–696. 

Wu, C.-C., Margulis, S.A., 2013. Real-time soil moisture and salinity profile estimation 
using assimilation of embedded sensor datastreams. Vadose Zone J. 12 (1), 1–17. 

S. Suman et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0022-1694(21)00721-6/h0005
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0005
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0005
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0010
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0010
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0010
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0015
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0015
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0015
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0015
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0025
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0025
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0025
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0030
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0030
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0035
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0035
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0035
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0035
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0035
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0040
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0040
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0045
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0045
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0045
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0045
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0050
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0050
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0050
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0050
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0055
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0055
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0060
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0065
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0065
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0065
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0070
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0070
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0075
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0075
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0075
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0080
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0080
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0080
https://doi.org/10.1002/hyp.3360070205
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0090
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0090
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0090
http://refhub.elsevier.com/S0022-1694(21)00721-6/optMi7QpoOSDJ
http://refhub.elsevier.com/S0022-1694(21)00721-6/optMi7QpoOSDJ
http://refhub.elsevier.com/S0022-1694(21)00721-6/optMi7QpoOSDJ
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0110
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0110
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0115
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0115
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0115
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0120
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0120
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0120
https://doi.org/10.1016/j.rse.2011.04.011
https://doi.org/10.1016/j.rse.2011.04.011
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0130
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0130
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0130
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0130
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0130
http://refhub.elsevier.com/S0022-1694(21)00721-6/optjBoU3oSi0v
http://refhub.elsevier.com/S0022-1694(21)00721-6/optjBoU3oSi0v
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0140
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0140
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0140
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0140
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0145
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0145
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0150
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0150
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0150
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0150
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0155
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0155
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0155
http://refhub.elsevier.com/S0022-1694(21)00721-6/optX9qKW2Xl2x
http://refhub.elsevier.com/S0022-1694(21)00721-6/optX9qKW2Xl2x
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0170
http://refhub.elsevier.com/S0022-1694(21)00721-6/h0170

	Comparison of soil dielectric mixing models for soil moisture retrieval using SMAP brightness temperature over croplands in ...
	1 Introduction
	2 Study site and data set description
	2.1 Study site characteristics
	2.2 In-situ measurements
	2.3 Satellite data description
	2.3.1 SMAP L3 SM and LIC brightness temperature
	2.3.2 NASA global precipitation measurement Integrated Multi-SatellitE Retrievals for GPM (IMERG)
	2.3.3 Leaf Area Index (LAI), ERA-Interim LST product and FAO soil data set


	3 Methodology
	3.1 Soil dielectric mixing models
	3.2 Single Channel Algorithm for SM retrieval
	3.3 Performance statistics

	4 Result and discussion
	4.1 Anand, Gujarat
	4.1.1 Temporal behavior of TB and SM retrieval parameters at the station
	4.1.2 Performance comparison at the Anand station
	4.1.3 Temporal consistency at the station

	4.2 Hoshangabad, Madhya Pradesh
	4.2.1 Temporal behavior of TB and SM retrieval parameters at the Hoshangabad station
	4.2.2 Performance comparison at the station
	4.2.3 Temporal consistency at the station

	4.3 Varanasi, Uttar Pradesh
	4.3.1 Temporal behavior of TB and SM retrieval parameters at the Varanasi station
	4.3.2 Performance comparison at the station
	4.3.3 Temporal consistency at the station

	4.4 Performance of Pooled data sets of all the three sites

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


