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A B S T R A C T

The episodes of heat wave events have strengthened in recent decades causing great concern for human health,
agriculture and natural ecosystem. In the present study, Regional Climate Models (RCMs) namely, CCAM and
RegCM, from Coordinated Regional Climate Downscaling Experiments (CORDEX) for South Asia (SA) are
evaluated for simulating heat waves (March–June) for a long-term period (1971 to 2005) over India in com-
parison with observations from India Meteorological Department (IMD). The statistical analysis (correlation,
RMSE, MAE, ECDF) results reveal differences in RCMs in simulating spatial pattern and trends of maximum
temperature before bias correction. Variance scaling bias correction is found to remove bias and improve model
simulations in capturing temperature variability. An increase in correlation in daily observations from 0.24 to
0.70 and reduction in RMSE from 8.08 °C to 2.02 °C and MAE from 3.87 °C to 2.43 °C after bias correction is
observed between model and observation.

LMDZ4 and GFDL-ESM2M are found to perform best in simulating interannual variability of seasonal mean
maximum temperature with an underestimation of −7.74% and −15.41% which improved significantly to
around −1.51% and − 0.78%, respectively after bias correction over India. LMDZ4 and GFDL-ESM2M are also
best-performing models in significantly reproducing the heat wave frequency and spatial variability in closer
proximity with observations over India amongst all models after bias correction. Over NW and western regions,
the LMDZ4 and GFDL-ESM2M ensemble models successfully capture the increasing trend of 0.2 events/year and
0.4 events/year accordance to IMD and IITM criteria, respectively. However, the ACCESS1.0, CNRM-CM5 and
CCSM4 ensemble experiments overestimated heat waves by ± 40 events in most sub-divisions in India. Over the
central Indian regions, the ACCESS 1.0 and CNRM-CM5 model output show a negative trend of −0.2 events/
year and large spatial variability possibly due to model associated uncertainties. Overall the results show an
improvement in capturing maximum temperature and heat waves across the regions of Indian sub-continent in
the bias-corrected downscaled CORDEX-SA ensemble RCMs than without bias-corrected output. The study
suggests a way forward to assess RCMs performance and uncertainty in extreme weather analysis in future
projections.

1. Introduction

With the advent of the 21st century, soaring mercury has crossed
previously established threshold across the globe. A shift in the global
temperature regime at the higher extreme is beyond any doubt or
speculation (Alexander et al., 2013; IPCC, 2013). As the global surface
temperature observed an increase of 0.85 °C during 1880–2012, the
frequency of warmer days and nights has increased since the latter half
of the 20th century (IPCC, 2013). These episodes of extreme tempera-
tures have severe consequences in forms of huge mortality due to heat

waves, global crop yield anomalies, changing paradigm of species-
ecosystem function with rising temperature and mental health risks
(Basu, 2009; Mall et al., 2016; García et al., 2018; Obradovich et al.,
2018; Singh et al., 2019; Vogel et al., 2019; Mall et al., 2019; Sonkar
et al., 2020).

Heat waves are perceived as a manifestation of prolonged extreme
temperature, driven and intensified by associated synoptic atmospheric
circulations and amplified by regional soil moisture deficit (Quesada
et al., 2012; Perkins, 2015; Rohini et al., 2016; Ghatak et al., 2017;
Singh et al., 2020). The nature of global heat wave increase resonates

https://doi.org/10.1016/j.atmosres.2020.105228
Received 29 May 2020; Received in revised form 31 July 2020; Accepted 28 August 2020

⁎ Corresponding author at: Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
E-mail address: rkmall@bhu.ac.in (R.K. Mall).

Atmospheric Research 248 (2021) 105228

Available online 01 September 2020
0169-8095/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01698095
https://www.elsevier.com/locate/atmosres
https://doi.org/10.1016/j.atmosres.2020.105228
https://doi.org/10.1016/j.atmosres.2020.105228
mailto:rkmall@bhu.ac.in
https://doi.org/10.1016/j.atmosres.2020.105228
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosres.2020.105228&domain=pdf


with the Indian subcontinent as recent studies analysing the trend of
extreme temperature events over India report an increase in intensity,
frequency and duration of heat wave post-1950s (Pai et al., 2013;
Rohini et al., 2016; Ratnam et al., 2016; Panda et al., 2017; Mukherjee
and Mishra, 2018). The state of this scenario is predicted to persists and
aggravate in the future as heat waves are projected to be multi-fold
frequent, intense and of longer duration under different emission sce-
narios (Murari et al., 2015; Perkins-Kirkpatrick and Gibson, 2017; ;
Alias et al., 2017; de Perez et al., 2018; Sonkar et al., 2019; Krishnan
et al., 2020).

Heat waves have been reported to have killed thousands of people
across the world including India. Its seasonal occurrence, high persis-
tence period and concurrent occurrence with drought amplifies the
impact many-fold a causing immediate concern (Russo et al., 2015;
Ghatak et al., 2017; Sharma and Mujumdar, 2017). Heat waves being a
global phenomenon have a severe impact on the local population, to
prevent and prepare against heat-related morbidity and mortality it is
required to understand the regional characteristics of heat extremes in
present as well as in the future. Therefore, a consistent effort to reduce
the vulnerability due to heat waves are being made by the scientific
community to advance the capacity of characterisation and prediction
of heat wave at high-resolution with high accuracy and least un-
certainty.

The reliability of future projections of extreme events depends upon
the ability of models to simulate the present extremes. IPCC assessment
reports have been using and improving the climate models to project
future global temperature under different emission scenarios (IPCC,
2013). The Coupled Model Inter-Comparison Project Phase 5 (CMIP5)
simulations have been widely used to study the trend of extreme tem-
perature and precipitation for historical and future scenarios (Sillmann
et al., 2013; Perkins-Kirkpatrick and Gibson, 2017; Purich et al., 2014;
Mall et al., 2018; Almagro et al., 2020). These studies have analysed the
climatology, variability and trends of observed climate against those
simulated by state-of-the-art global climate models and have found to
be reliable for forecasting future variations of the climatic parameters
(Alexander and Arblaster, 2017). Mishra et al., 2017b estimated an
increase of 3–9 and 16–30 events in frequency of severe heat wave
events over India using CESM and CMIP5 simulations for RCP8.5 sce-
nario for 2021–2050 and 2071–2100 from the base period of
1971–2000. Also, future projections of a heat wave over India by using
CMIP5 simulations show an increase of 1.5–2.5 heat wave events and
increase in the average duration of 12–18 days during 2020–2064
(Rohini et al., 2019).

However, limitations of these models have been reported in cap-
turing orographic and coastal characteristics and also in accom-
modating local scale dynamic changes (Meehl et al., 2007; Purich et al.,
2014). Therefore, an accurate representation of dynamical processes at
the regional scale to assess the impact of climate change at a local scale
is required. Downscaling provides a way to extrapolate large scale cli-
matic phenomenon to a high-resolution regional-scale to assess the
regional impact of climate change (Racherla et al., 2012; Xu et al.,
2019). Dynamical and statistical approach has been used to downscale
the GCMs. While the former approach uses the physical processes based
regional climate models driven by GCM boundary conditions, the latter
works on statistical relationships between are local predictands and
global predictors (Tang et al., 2016).

The Coordinated Regional Climate Downscaling Experiment
(CORDEX) is a regional climate downscaling (RCD) initiative by World
Climate Research Program (WCRP) to produce a coordinated frame-
work of regional climate projections for different domains (Giorgi et al.,
2009). The rationale behind the CORDEX project stems from the need
for coordinated effort of the modeling community to address the lim-
itations in generating comprehensive understanding, evaluation and
projection of regional climate information. The primary goal of
CORDEX are evaluation of RCD based techniques, uncertainty char-
acterisation and improvement in producing regional climate projections

(Giorgi et al., 2009). To asses the capability of RCMs in representing
regional climate characteristics is the first step in CORDEX experi-
mental design. On the basis of evaluation of models reliable future
projection can be made at a regional scale.

CORDEX experiments have been widely used for evaluation and
projection studies in respective domains serving as baselines of present
and future climate change. Jacob et al. (2014) studied the added value
to regional climate change information provided by high-resolution
EURO-CORDEX RCMs for RCP 4.5 and 8.5 scenarios in comparison to
the multi-model ensemble from EU-FP6 ENSEMBLES for the SRES A1B
over Europe. The findings indicate that the high-resolution simulations
of EURO-CORDEX RCMs increased the regional details and improved
climate change projections as compared to ENSEMBLE datasets.
Vautard et al. (2013) studied the performance of a large ensemble of
RCMs within EURO-CORDEX at two spatial scales of 12 km and 50 km
for heat wave persistence and amplitude. The study states an im-
provement in simulating heat wave events duration (persistence) at a
high-resolution while an overestimation for the amplitude by the RCMs.

Lhotka et al. (2017) emphasized on the need of evaluating model
performance in simulation of large-scale circulation and land-atmo-
sphere interactions associated with heat waves by RCMs. It was found
that the ensemble mean of EURO-CORDEX captures the heat wave
extremity index well over Central Europe but individual RCMs over-
estimated and underestimated the events attributing to inability in si-
mulating associated meteorological phenomenon efficiently High signal
to noise ration data is required to study climate change in complex
topography regions such as mountains which is difficult to achieve with
coarse resolution climate models.

Sanjay et al., 2017 evaluated the mean climatology and changes in
seasonal mean temperature and precipitation over Hindu Kush Hima-
layan region using CORDEX RCMs for near (2036–2065) and far future
(2066–2095). Large cold biases were observed in summer and winter
seasons in the HKH region against the observation. The bias shown by
the RCMs was greater than their driving AOGCMs for temperature.
However, both RCMs and AOGCMs overestimated ensemble median
total precipitation where RCMs were better than AOGCMs. For far fu-
ture period under RCP8.5 scenario RCMs showed higher confidence in
projecting warming of 5.4 °C during winter than of 4.9 °C in summer
and an increase of 22% in summer monsoon precipitation. Studies have
evaluated the performance of CORDEX-SA RCMs in simulating Indian
summer monsoon variability, extreme precipitation and temperature
over India and particular regions but assessment of CORDEX-SA RCMs
for heat wave simulation over India is still lacking (Choudhary et al.,
2018; Panjwani et al., 2020; Pattnayak et al., 2018; Prajapat et al.,
2020).

The objective of the present study is to assess the capability of the
high-resolution (50 km) CORDEX-SA RCM outputs in capturing the
spatial variability and temporal frequency of heat wave events over
India during the historical period (1971–2005) for March–June season.
The CORDEX dataset is comprised of downscaled climate scenarios for
the South Asia region that are derived from the Atmosphere-Ocean
coupled General Circulation Model (AOGCM) runs conducted under the
Coupled Model Inter-comparison Project Phase 5 (CMIP5) [Taylor et al.
2012]. The findings of the study are expected to provide a reliable fine-
scale model-based projection of heat waves over India in future based
on their performance for the historical period. Also, the information
provided by this study can be useful in utilizing downscaled RCMs for
heat wave forecasting at a regional level based on their regional per-
formance for meteorological subdivisions of India. An inter-model
comparison study is undertaken to evaluate the performance of eight
bias-corrected ensemble member CORDEX-SA RCMs namely, CCAM
and RegCM411 in simulating heat waves over India.

Heat waves are defined based on criteria given by IMD and IITM and
the study period extends to heat wave events observed during
March–June (1971–2005) over India. Variance scaling method has been
used to bias correct the CORDEX-SA RCM outputs to remove any
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inherent bias and match the climate change signal given by models with
that of observed for India and its meteorological subdivisions.Our study
provides the first assessment of performances of CORDEX- SA RCMs for
heat waves over India which will be useful in future projection studies.

2. Materials and methods

2.1. Study area

The study area extends over Indian region from 8°4′N to 37°6′ N
latitude and 68° 7′ E to 97°25′ E longitude in the South Asian region of
the CORDEX experiment. The landmass is spread over an area of 3.28
million sq. km accounting for 2.4% of the total world area with a long
coastline of 7517 km. The physiography of Indian region exhibits dis-
tinct diversity ranging from rugged topography of lofty Himalayan
mountain ranges to fertile plains of northern India.

The varied landforms like deserts, Islands, coastal plains and
mountainous region etc., has shaped the demographic distribution and
livelihood pattern of people in India (Fig. 1).

The climate profile of the country consists of regional variations
with tropical climate in the south, sub-humid tropical in the central and
temperate climate in the northern Himalayan region. India
Meteorological Department (IMD) has categorized the Indian climate in
four prominent seasons i) Cold weather season (January–February) ii)
Pre-monsoon season (March–May) iii) Southwest monsoon season
(June–September) and iv) Post monsoon/Northeast monsoon season
(October–December) (Attri and Tyagi, 2010). India receives 75% of its
total rainfall during South-West monsoon season with an average an-
nual rainfall of 1190 mm for both the rainy seasons. The rainfall dis-
tribution ranges from as low as 50–130 mm in Rajasthan to as high as
the world's maximum of around 11,410 mm in Mawsynram. Similarly,
the temperature profile of the country shows an extreme distribution
ranging from below 0° in the Northern region in winters to above 45 °C
during May–June (Attri and Tyagi, 2010). The climatic characteristics
and topographical features altogether determine the soil, distribution of
flora and fauna and also agricultural practices of the region.

2.2. Data

The study analyses the seasonal heat wave occurrences in hot
weather season for March–June during the historical period of
1971–2005 over India at each grid level of 0.5° × 0.5° resolution using

model simulations and observation datasets. Daily gridded maximum
surface air temperature (Tmax) developed by Srivastava et al. (2009)
was obtained from the India IMD at the resolution of 50 km for the
study period. The regional climate simulations for India was obtained
from CORDEX South Asia experiments which extend over the South
Asian region from 19.25°E–116.25°E and 15.75°S–45.75°N at a resolu-
tion of 0.5° (~50 km). The data represents eight CORDEX-SA experi-
ments in which the eight experiment datasets comprise of an ensemble
of eight dynamically downscaled projections using a high-resolution
regional climate model. Conformal-Cubic Atmospheric Model (CCAM)
driven from six different Global Climate Models (GCMs) namely AC-
CESS 1.0, CCSM4, GFDL-CM3, CNRM-CM5, MPI-ESM-LR and NorESM-
1 M (Table1.).

The other two experiments use RegCM4.1.1 regional climate model
contributed by the Center for Climate Change Research, Indian Institute
of Tropical Meteorology (CCCR-IITM) forced by boundary conditions
from LMDZ4 and GFDL-ESM2M global climate model. The RCM dataset
obtained from CCCR-IITM was daily 2 m near-surface maximum tem-
perature at a spatial resolution of 0.5° × 0.5° latitude-longitude grid
which corresponds to a horizontal resolution of ~50 km for
March–June during the historical period of 1971–2005 for 1099 grids
over India. In the study, the downscaled RCM output dataset (raw) were
bias-corrected using variance scaling method (bias-corrected output).
This bias-corrected dataset was used for model performance evaluation.
The specifications of the ensemble members of CCAM and RegCM4.1.1
RCMs of CORDEX-SA experiment is given in Table 1.

2.3. Heat wave indices

While defining heat wave it is indispensable to consider different
aspects that are crucial to measuring the degree of impact it will have
on human health, wildlife, agriculture, infrastructure and economy.
Over the course of extensive research on understanding the nature of
the threat posed by prevailing extreme temperature, the scientific
communities (Expert Team on Climate Change Detection and Indices
(ET-CCDI)) and researchers have adopted various indices to quantify
the degree of severity associated with heat wave (Karl et al., 1999;
Peterson et al., 2001; Perkins and Alexander, 2012). Studies in the past
have explored from simple metrics based on thresholds and percentiles
to relatively complex indices consisting of departures from long term
normal along with percentiles based on varying moving windows.

A recent study attempts to understand the temporally compound
structure of heat waves identified as the occurrence of intermittent
short breaks of maximum cooler number of days between minimum
consecutive hot days to mark the beginning and end of heat wave event
(Baldwin et al., 2019). Indices for identifying heat wave are not re-
stricted to measuring only day time temperature as the high nighttime
temperature and reduced diurnal temperature exacerbate the impact in
absence of discharge of daytime heat (Gosling et al., 2009). A period of
three days has been widely used as a measure of persistent heat wave
imposing a health hazard. Mukherjee and Mishra (2018) considering
the impact of persisting high night time temperature consecutive 3 days
moving average for daily maximum and minimum temperature to
compute concurrent hot day and hot night (CHDHN)as an index of heat
wave.

A detailed analysis of the impact of temperature must account the
nature of physiography of the region, surrounding environmental
condition particularly vegetation, socio-economic conditions and de-
gree of exposure of the population. Hence, the topography and en-
vironment have a profound impact on temperature variation and so the
indices vary regionally. In the present study, we have used two different
criteria given by IMD (IMD, 2018) and IITM (Mandal et al., 2019)
(Fig. 2.) to declare heat wave events and also to compare the relative
performance of models in simulating heat waves through both the cri-
teria.

The IMD criteria should be met for at least two stations in a

Fig. 1. Topography (in meters) of Indian region and its meteorological sub-
divisions considered for the study.
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meteorological sub-division for consecutive days and heat wave will be
declared on the second day while each day fulfilling IITM criteria is
declared as a heat wave. Heat waves in hilly, plains and coastal region
of India have been declared according to the different thresholds
mentioned in IMD criteria.

2.4. Bias correction

As climate models simulate the interaction of climatic variables of
the complex climate system, it is indispensable to account the un-
certainty associated with model simulation for any analysis. Regional
climate model simulations are associated with certain bias owing to the
model systematic error and inaccurate physical parameterizations
(Christensen et al., 2008; ). To improve the model simulations for cli-
mate change impact assessment studies several simple to sophisticated
bias correction approaches have been developed such as linear scaling,
function transfer and distribution mapping (Schmidli et al., 2006;
Themeßl et al., 2012; Chen et al., 2013).

Typical biases in RCMs are associated with simulations of mean and
variability of the climate variables which are corrected using factors
based on differences in mean and ratio of variances of raw model si-
mulations and observed data for a reference period using linear and
non-linear equations. These methods aim to improve day to day
variability of the climate variables and fitting model simulations to the
observations for the time series with little emphasis on extreme values.
In the case of hydrological extremes, distribution mapping methods
which require the construction of transfer functions to correct bias for
present and future projections have been found to perform well
(Teutschbein and Seibert, 2012). To assess the performance of bias
correction in simulating extreme temperature both at lower and higher
ends kernel density distribution for daily maximum temperature has
been estimated in the present study.

Variance scaling method given by Chen et al. (2011a, 2011b) was
adopted for bias correction of the historical ensemble simulations
(1971–2005) against observed data from IMD for effective heat wave
simulation. Variance scaling method adjusts both mean and variance
associated bias in RCM simulations and so are better than mean ad-
justing approaches and have been found to perform well for bias cor-
rection of model simulations (Teutschbein and Seibert, 2012; Fang
et al., 2015; Luo et al., 2018). Teutschbein and Seibert (2012) have
simplified the variance scaling equations given by Chen et al. (2011a,
2011b) in the following steps:

In the first step, linear scaling is performed for correcting daily
maximum temperature (Tcontr

∗1(d)) by adding the difference between
mean monthly temperature of observed (IMD) and RCM datasets μm

(Tobs(d)) − μm(Tcontr(d)) to RCM daily maximum temperature Tcontrfor
the period 1971–2005. The monthly mean maximum temperature is
obtained for each of the month (March–June) for the reference period
of 1971–2000 for both observed and model output.

= +T (d) T (d) µ (T (d)) µ (T (d)contr
1

contr m obs m contr (1)

In the next step before variance scaling the mean corrected daily
model data are shifted to zero mean and standard deviation of one on a
monthly basis using the following equation:

=T (d) T (d) µ (T (d))contr
2

contr
1

m contr
1 (2)

Further, the variance of model simulations from step 2 (Tcontr
∗2(d))is

scaled by the ratio of the monthly standard deviation of observed data
σm(Tobs(d))to the monthly standard deviation of model data σm

(Tcontr
∗2(d)) using the following equation:

= ×T (d) T (d) (T (d))
(T (d))contr

3
contr

2 m obs

m contr
2 (3)

In the final step, the bias-corrected daily RCM temperature data are
obtained by adding corrected mean to the variance scaled dailyTa
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maximum temperature for the entire study period of 1971–2005 using
the following equation.

= +T (d) T (d) µ (T (d))contr contr
3

m contr
1 (4)

where contr is RCM-simulated 1971–2000, d is daily, obs is observed
maximum temperature, −σm is the monthly standard deviation, μm is
monthly mean, * is final bias-corrected *1,2,3 is the intermediate bias-
corrected model. The mean and standard deviation of the RCMs were
found to be same as that of the observed which ensures that the bias
correction is performed correctly. Fig. S1 & S2 and Table S2 show that
after bias correction the RCM mean maximum temperature for Mar-Jun
(1971–2005) and the standard deviation is same as that of observed.

2.5. Statistical analysis

To assess the performance of RCMs in simulating seasonal mean
maximum temperature after bias correction Empirical Cumulative
Distribution Function (ECDF) was constructed. ECDF shows if the bias-
corrected model simulations are able to reproduce the data as observed
or the bias exists in the form of over or underestimation in the density
distribution of the data. These assessments help in selecting the best fit
model for impact studies (Russo et al., 2014; Russo et al., 2015; Wang
et al., 2016). Kernel Density Estimate (KDE), a non-parametric and
empirical method of probability density distribution is applied to study
and compare the distribution of daily maximum temperature of the raw
and bias-corrected model datasets with observed data over each grid of
the meteorological subdivisions of India (O'Brien et al., 2016).

In the study, we use different statistical metrics which provide an
objective measure to assess the relative performance of bias-corrected
RCM outputs in simulating the maximum surface air temperature over
India. To measure this relative improvement we have estimated the
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and
Willmot's index of agreement (d) which is the ratio of the mean square
error and the potential error (PE) multiplied by N (no. of observation)
and then subtracted from one which is a standardized measure of the
degree of model prediction error and varies between 0 and 1. A value of
1 indicates a perfect match, and 0 indicates no agreement at all
(Willmott, 1981). These metrics measure the overall bias and degree of
similarity between raw model dataset and bias-corrected data with
observations (Gleckler et al., 2008).

Taylor diagram has been widely used to evaluate the performance of
RCM simulations against observation. It provides an easily interpretable
graphical statistical summary of different metrics indicating the degree
to which the model and observed patterns match each other (Taylor,

2001; Gleckler et al., 2008; IPCC, 2013; Miao et al., 2014; Harrison
et al., 2015; Gupta et al., 2020). In the diagram, while the root mean
square error measures centered mean differences between the two
fields, standard deviation quantifies the variance and pattern correla-
tion indicate the similarity between raw model, bias-corrected model
and observed data (Taylor, 2001; Gleckler et al., 2008).

To estimate the suitability of the individual models for studying
heat wave characteristics over India long term linear trends at the
significance level of 90% were estimated to determine any possible
long- term increasing or decreasing spatio-temporal trend in the oc-
currence heat waves as simulated by ensemble members against ob-
served (Yao et al., 2013; Rohini et al., 2019)

3. Result & discussions

3.1. Temporal variability and probability density distribution

The CORDEX-SA raw and bias-corrected output has been compared
to that of IMD observations to assess their ability in simulating max-
imum temperature over India. The study evaluates the model perfor-
mance using ECDF, RMSE, MAE, index of agreement and Taylor dia-
gram using the seasonal mean of daily maximum temperature during
March–June (1971–2005) of all the grids over India. Fig. 3. shows the
ECDF of the seasonal mean of daily maximum temperature from all
eight ensemble RCM outputs, bias-corrected model output and IMD
observed maximum temperature. The distribution shows a clear dif-
ference between maximum temperature simulated by both the en-
sembles before bias correction. The mean maximum temperature si-
mulated by GFDL-ESM2M (31.84 °C) and LMDZ4 (34.73 °C) of
RegCM4.1.1 ensemble is underestimated by −15.41% and − 7.74%
respectively against the observed (37.64 °C).

This underestimation is reduced to −0.78% and − 1.51% after bias
correction of the model data. The CCAM ensemble members, over-
estimate the mean maximum temperature 41.92 °C (CCSM4), 41.26 °C
(MPI-ESM-LR) with that of observed 11.37% and 9.62% which reduces
to 4.28% and 3.05% after bias correction. A significant improvement is
observed after variance scaling, as indicated in Fig. 3 where each of the
bias-corrected model output distribution (dashed lines) followed the
observed (red line) distribution of maximum temperature closely. MPI-
ESM-LR simulates the minima and maxima as 23.65 and 38.79 °C clo-
sest to the observed with least overestimation of 0.80% and 3.06% in
CCAM ensemble while GFDL-ESM2M performs the best after bias cor-
rection in RegCM4.1.1 ensemble by exhibiting the minima and maxima
of 24.50 °C and 37.35 °C with an overestimation of 4.44% and

Fig. 2. IMD and IITM Criteria for Heat Wave Events.
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underestimation of −0.78% respectively. Taylor diagram (Fig. 4)
shows the large intermodel spread in RMSE, standard deviation and
correlation coefficient between CCAM and RegCM411 ensemble dataset
with the observed which reduces after bias correction. After bias cor-
rection all of the RCM simulations approximate the observation to a
great extent as a decrease from 3.87 °C to 2.43 °C in deviation and
centred root mean square error of 8.08 °C to 2.02 °C and increase in
correlation coefficient from 0.23 to 0.70 is observed.

3.2. Performance statistic metric and bias estimation

The statistical measure of fidelity between model simulations and
observation is estimated using MAE, RMSE and d as given in Table 2.
The absolute measure of the models shows GFDL-CM3 have least RMSE

Fig. 3. Empirical Cumulative Density Function of CORDEX- RCMs before and after bias correction.

Fig. 4. Taylor Diagram showing model performance of CORDEX- RCMs before and after bias correction.

Table 2
Root mean square error (RMSE), mean absolute error (MAE) and Index of
agreement (d) of raw (mod) and bias-corrected (var) model data datasets.

Model RMSE
(mod)
(°C)

RMSE
(var)
(°C)

MAE
(mod)
(°C)

MAE
(var)
(°C)

D
(mod)

d
(var)

R
(mod)

r
(var)

CNRM-CM5 4.19 2.06 3.55 1.61 0.52 0.81 0.25 0.67
CCSM4 4.19 2.13 3.55 1.66 0.51 0.80 0.23 0.65
LMDZ4 5.83 2.08 5.12 1.67 0.52 0.81 0.63 0.66
NorESM1-M 4.21 2.23 3.57 1.73 0.51 0.78 0.23 0.61
GFDL-CM3 3.92 1.95 3.28 1.51 0.52 0.83 0.24 0.70
MPI-ESM-LR 3.93 2.07 3.31 1.64 0.51 0.78 0.28 0.66
ACCESS 1.0 4.09 2.07 3.49 1.62 0.51 0.81 0.24 0.66
GFDL-ESM2M 8.08 2.02 7.50 1.61 0.40 0.81 0.60 0.68
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of 1.95 °C followed by GFDL-ESM2M (2.02 °C) after bias correction
which had the highest RMSE of 8.08 °C before bias correction. Simi-
larly, in the metric of MAE, GFDL-CM3 have least MAE of 1.5 °C, fol-
lowed by GFDL-ESM2M (1.61 °C) and CNRM-CM5 (1.61 °C).

Amongst all of the ensemble members GFDL-CM3 has the highest
index of agreement (0.83) with the observed maximum temperature
while NorESM1-M and MPI-ESM-LR have the least index of agreement
(0.78). These measures indicate GFDL-CM3 perform significantly better
amongst eight ensembles and NorESM1-M has the least score in simu-
lating daily mean maximum temperature over India.

To assess the relative improvement of the models after bias cor-
rection a ratio-based assessment of raw model output to bias-corrected
output (var) for each of the performance metric is computed as given in
Table 3. shows GFDL-ESM2M and LMDZ4 observe around 2–4 times
decrease in MAE and a similar increase in agreement with the ob-
servation.

3.3. Kernel density estimation for meteorological sub-divisions

Fig. S3. shows KDE plots of the daily maximum temperature of the
three fields (i.e., raw, bias- corrected and observed) for March–June
(1971–2005) for each of the meteorological subdivisions except for
Andaman Nicobar and Lakshadweep island. The distribution helps to
identify the most suitable model for studying extreme temperature for
each of the meteorological subdivision. The distribution shows that
each of the model outputs can simulate maximum temperature similar
to that of observed after bias-correction. A common observation in the
raw dataset for each of the subdivision shows that the CCAM ensemble
member models overestimate the maxima in most of the subdivisions.
The overestimation in °C ranges from 6 °C to 11 °C and more such as it
simulates as high as 56.03 °C in Punjab (NorESM1-M) and 55.57 °C for
West Rajasthan (CCSM4). Whereas RegCM411 ensemble member un-
derestimate the maxima and minima in subdivisions which are ob-
served over a range of −37.44 °C to −0.72 °C for J&K (LMDZ4) and
Kerala (GFDL-ESM2M) in minima and respectively −9.18 °C and to
−0.12 °C for Himachal Pradesh (LMDZ4) and Coastal Karnataka
(GFDL-ESM2M) for maxima.

While GFDL-ESM2M and LMDZ4 have been found to stimulate both
temperature range and probability density in agreement with ob-
servations over most of the subdivisions after bias-correction as given in
Fig. 5 which shows the models performing best and worst before (solid
line) and after bias correction (dotted line) with reference to the ob-
served. There has been a significant improvement in simulations after
bias correction for hilly subdivisions such as Himachal Pradesh, Jammu
and Kashmir where both the ensemble member dataset (raw) failed to
capture the temperature variations showing both cold and warm bias.
For mountainous areas, it is important to understand the elevation
difference between observed and simulated. As the elevation in the
models is smoothed models overestimate temperatures for hilly sta-
tions. In Kashmir perhaps the station is in a valley surrounded by high

mountains causing a negative bias. The density estimates for East and
West Madhya Pradesh found CCAM ensemble members to under-
estimate the peak while GFDL-ESM2M performs the best.

After bias correction, ACCESS 1.0, CCSM4, CNRM-CM5 performed
better as the bias reduced to 0.13%, − 1.85% and 0.75% in maxima
and 19.13%, 8.75%, −7.85% in minima of temperature respectively in
case of Haryana, Delhi and Chandigarh subdivision. Variance scaling
does not perform well for Chhattisgarh, East MP, Gangetic WB,
Jharkhand and Orissa as CCAM ensemble models underestimate the
lower maximum temperature in the range of −12.89% to −33.85%.
Where ACCESS1.0 and CNRM-CM5 show the highest negative bias of
−38.08% and − 33.85%. while RegCM4 show relatively lower bias of
0.67% to 17.5% in these subdivisions. For Madhya Maharashtra,
Rayalaseema, West Uttar Pradesh, Tamil Nadu and Puducherry both
ensemble members follow the observed temperature reasonably well
after bias correction.

As the majority of the subdivisions can reproduce the daily max-
imum temperatures over the subdivisions, the bias-corrected model
output can be used to evaluate the performance of models in heat wave
estimation. Nayak et al. (2019) found that RegCM4 performs reason-
ably well in simulating temperature over India particularly in the
northwestern region where extreme temperatures are observed. Our
results correlate well with a recent study evaluating the performance of
GCMs which found GFDL-ESM2M better in simulating extreme tem-
perature over India (Panjwani et al., 2020).

To understand the pattern of temporal variations shown by raw and
bias corrected model output with reference to observed a time series of
annual mean maximum temperature (Mar-Jun) during the period
1971–2005 is constructed (Fig. 6). Assam & Meghalaya, East Madhya
Pradesh, Gujarat, Jammu and Kashmir, Odisha, Tamil Nadu, Vidarbha
and West Rajasthan meteorological subdivisions which represent hilly,
plain and coastal areas of northern, eastern, western and southern re-
gion of the country are selected for the see the temporal variations. A
common observation for all the models shows that Both raw model
output (raw) and bias corrected (var) model output show same pattern
of interannual variability There is no effect of bias correction on tem-
poral pattern of the output but the magnitude of difference in annual
means is reduced remarkably after bias correction.

It was observed that CNRM-CM5, GFDL-CM3, GFDL-ESM2M MPI-
ESM-LR and LMDZ4 are more consistent in following the observed
annual cycle than ACCESS 1.0, CCSM4 and NorESM1-M in most of the
sub-divisions (Figure). None of the models have followed the observed
temporal characteristics exactly but show some consistency with the
reference. For the coastal regions of Odisha and Gujarat CNRM-CM5,
GFDL-CM3, MPI-ESM-LR and GFDL-ESM2M follow the observed pat-
tern for longer duration. The timeseries for Vidarbha which is a heat
wave prone region shows GFDL-CM3 and MPI-ESM-LR are found to
simulate the observation well particularly after late 1980s period.
While CCSM4, CNRM-CM5, LMDZ4 and GFDL-ESM2M capture the
years with steep decline or increase in temperature for West Rajasthan.

In the hilly region of Jammu and Kashmir where large cold bias is
shown by both the ensembles (CCAM and RegCM4), CCSM4 and MPI-
ESM-LR performed best followed by GFDL-ESM-2M and LMDZ4. GFDL-
CM3 followed by GFDL-ESM-2M and LMDZ4 are better in Eastern
Madhya Pradesh. In north eastern part of the country (Assam &
Meghalaya) GFDL-CM3, CNRM-CM5 simulate the temporal pattern very
well with the observation followed by GFDL-ESM2M and in the
southern region (Tamil Nadu & Pondicherry) CNRM-CM5, LMDZ4 and
GFDL-ESM2M are found better.

3.4. Simulation of heat wave events using IMD and IITM criteria

3.4.1. IMD criteria
The ability to simulate heat waves by bias-corrected CORDEX-RCMs

is assessed by comparing the model simulations with observed heat
wave events calculated using IMD criteria for March–June during the

Table 3
Relative measure of performance of bias correction for CORDEX-RCMs as ratio
of model to bias corrected (var) data for RMSE, Index of Agreement (d), and
Mean Absolute Error (MAE).

Model RMSE (mod) / RMSE
(var)

MAE (mod) / MAE
(var)

d (var) / d
(mod)

CNRM-CM5 2.03 2.20 1.56
CCSM4 1.97 2.14 1.57
LMDZ4 2.80 3.07 1.56
NorESM1-M 1.89 2.06 1.53
GFDL-CM3 2.01 2.17 1.60
MPI-ESM-LR 1.90 2.02 1.53
ACCESS 1.0 1.98 2.15 1.59
GFDL-ESM2M 4 4.76 2.03
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Fig. 5. Kernel Density Estimate of observed and best andworst performing CORDEX- RCMs for March–June during 1971–2005 over meteorological subdivisions of
India (raw model and bias corrected output are shown by solid and dotted line respectively in the figure).
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period 1971–2005 (Fig. 7 a). The analysis shows that heat wave events
are observed over most of the region of India except for SW region
constituting of parts of Karnataka, Kerela, Madhya Maharashtra.

The frequency of heat wave events for the season was maximum in
central (> 140 events), northwestern (~110 events) and south-central
region (~90 events) which cover East MP, West MP, East UP, West UP,
East Rajasthan, West Rajasthan, Himachal Pradesh and Vidarbha me-
teorological subdivision. Both CCAM and RegCM4 members simulate
the highest frequency of heat waves over these regions as observed.
However, the occurrence varies for each of the models.

LMDZ4, GFDL-ESM2M and MPI-ESM-LR have been found to simu-
late cumulative heat wave frequency in the range of 90–130, 100–150
and 100–130 events similar to that of observed (90–150 events) in
highest heat wave recording regions (East and West MP). GFDL-CM3
(100–110 events) and CNRM-CM5 (> 120 events) also resemble close
to the observations while CCSM4 and ACCESS 1.0 overestimate the
events recording 140–170 and 140–190 events in the above region. An
overestimation in spatial variability is shown by MPI-ESM-LR and
NorESM-1 M for parts of East and West MP. These two models re-
port > 120 heat wave events in those parts where < 90 events are re-
corded in observation.

GFDL-ESM2M recorded 90–100 and 100–110 heat wave events for
West and East Rajasthan events similar to the observed (90–100 and
100–110 heat wave events. Moreover, LMDZ4 with < 90 events and
MPI-ESM-LR with < 100 events perform fairly well while CCSM4 and
ACCESS 1.0 overestimate for both the subdivisions with 100–140
events. An underestimation of heat waves is observed over West
Rajasthan by GFDL-CM3 (< 60 events) and NorESM-1 M (< 80 events).
In West and East UP highest heat wave frequency of 90–120 events is

observed which is best simulated by LMDZ4 (80–120 events) and GFDL-
CM3 (80–110 events).

For Vidarbha region which is extremely vulnerable to the impact of
heat wave events GFDL-ESM2M and MPI-ESM-LR record a maximum of
80–100 events as observed providing better results. In case of the hilly
region in Himachal Pradesh and Jammu and Kashmir where large bias
was observed before bias correction, GFDL-ESM2M is found to re-
produce the events better. For the southern coastal region (Kerala and
Tamil Nadu and Puducherry) it is observed that CCAM ensemble
models record an occurrence of heat wave events whereas LMDZ4 and
GFDL-ESM2M ensemble for RegCM4 do not show heat waves in the
region similar to the observed. This indicates that RegCM4 models are
comparatively better at capturing associated atmospheric circulations
in the coastal region. High-resolution.

The boxplot in Fig. 8 shows the comparison of heat wave frequency
as calculated from CORDEX RCMs data in comparison to IMD datasets
for 1971–2005 where LMDZ4 has found to be most similar in lower
quartile (301.5), median (704) upper quartile (1333.5) and as observed
(IMD) (269.5, 649 and1332).

3.4.2. IITM criteria
IITM criteria has been used for forecasting and prediction of heat

wave events over India in a recent study by Mandal et al. (2019). It is a
percentile-based criterion and estimates each day for heat wave ac-
cording to the threshold, unlike IMD criteria which accounts for con-
secutive two days for declaring heat waves. The North Western, Central
and South-Central region of the country observe the highest frequency
of heat wave events similar to as recorded using IMD criteria. This
shows that both the criteria fulfil the conditions for defining heat waves

Fig. 6. Timeseries of seasonal mean maximum temperature (Mar-Jun) during 1971–2005 for observed, raw (solid line) and bias-corrected (dotted line) CORDEX-
RCM output over India.

S. Singh, et al. Atmospheric Research 248 (2021) 105228

9



and hence are comparable. However, no heat wave is reported in
northern and northeastern hilly regions according to IITM criteria
(Fig. 6b) where IMD criteria observed heat wave events (Fig. 6a). Both
CCAM and RegCM4 ensemble member models are able to simulate heat
wave in the heat wave prone regions.

The spatial occurrence of heat wave is best simulated by LMDZ4
followed by GFDL-ESM2M according to IITM criteria while an over-
estimation in spatial occurrence is recorded by CCAM ensemble models
in hilly areas and in the southern coastal region where heat waves being
absent in observation. The LMDZ4 simulations (Fig. 7b) of heat wave

events resemble closely to observations in most of the subdivisions
while GFDL-ESM2M overestimates the frequency in Vidarbha region
(by around 50 events). NorESM1-M, CNRM-CM5 and GFDL-CM3
overestimate in hilly and coastal subdivisions by < 40 ± 10 events.
ACCESS1.0 and CCSM4 and GFDL-CM3 simulate > 400 heat wave
events over a larger spatial area in Vidarbha and Telangana sub-divi-
sion which record < 350 events in observed data.

Fig. 7. Total number of observed and bias-corrected CORDEX-RCM simulated heat wave events for March–June during the period of 1971–2005 using (a) IMD and
(b) IITM.

Fig. 8. Boxplots of observed and CORDEX-RCM simulated heat waves events using IMD criteria.
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3.5. Heat wave trend analysis

Student's t-test at 90% confidence level is conducted to estimate the
trend in spatio-temporal occurrence of observed and model-simulated
heat waves for each grid during Mar-Jun (1971–2005). Fig. 9. shows
the spatial variability of statistically significant trend of heat wave
events. For the parts of the northwestern region only LMDZ4, GFDL-
ESM2M and GFDL-CM3, NorESM1-M and MPI-ESM-LR show a sig-
nificant increasing trend while no significant trend is shown by other
models for both IITM and IMD criteria. In which LMDZ4 overestimates
the magnitude and spatial occurrence of an increasing trend 0.2 events
(IMD criteria) and 0.4 events/year (IITM criteria) against the observed
trend of < 0.1events/year (IMD criteria) and < 0.2 events/year (IITM
criteria).

NorESM1-M also shows similar overestimation of 0.2–0.3 events/
year over the northwestern region (IITM criteria). While GFDL-ESM2M,
GFDL-CM3 follow the observed trend for West Rajasthan with an in-
creasing trend of ~0.1 events/year (IMD criteria). Overall, it was found
LMDZ4 and GFDL-ESM2M are better in simulating heat waves in
northwestern region. In the western region (Gujarat and Saurashtra and
Kutch) only LMDZ4 and GFDL-ESM2M were found to perform well by
showing a significantly increasing trend similar to the observed
(< 0.1events/year) in both the criteria. GFDL-CM3 also show an in-
creasing trend but varies in spatial occurrence and frequency which
suggests the model can be improved and yield better results for the
western region.

Except for CCSM4 none of the RCMs show are able to capture any of
the observed negative trend of −0.1 to −0.2 events/year for the
northern hilly regions. But an increasing overestimated trend of
0.05–0.2 events/year is observed by LMDZ4,GFDL-ESM2M, MPI-ESM-

LR, NorESM1-M, CNRM-CM5 and GFDL-CM3 (IMD criteria) and LMDZ4
(IITM criteria) is observed. For central region (East and West MP) only
LMDZ4 performs well by observing an increasing trend of 0.1–0.2
events/year according to IMD criteria while for IITM criteria sig-
nificantly increasing trend is shown by LMDZ4 (0.1–0.3events/year),
GFDL-ESM2M (< 0.2 events/year), GFDL-CM3 (< 0.2 events/year),
NorESM1-M (0.2–0.3events/year). LMDZ4 performs well in both the
criteria in the central region. Record significantly increasing trend in
which the only LMDZ4 resembles closely to the observation (0.1–0.3
events/year) in both the criteria,For the south-central region (Vidarbha,
Telangana, Rayalaseema) only MPI-ESM-LR show a positive increase
of < 0.1 events/year (IMD) and < 0.2 events/year (IITM) as observed
in few grids of Rayalaseema. While LMDZ4 overestimates increasing
trend in Vidarbha and GFDL-ESM2M overestimates both in Vidarbha
and Rayalaseema for IITM criteria. MPI-ESM-LR, LMDZ4 and GFDL-
ESM2M can be improved and employed in studying heat wave occur-
rence in the south-central region.

For the eastern region, none of the models observed the declining
trend of heat wave events while an overestimated increasing trend is
observed in the north eastern region by CCSM4, LMDZ4, ACCESS 1.0
and GFDL-ESM2M. While CCSM4, ACCESS 1.0 and CNRM-CM5 re-
corded highest spatio-temporal occurrence of heat wave events, they
did not show any similarity with observed in trend analysis. Overall, the
results indicate that LMDZ4 and GFDL-ESM2M for RegCM411 ensemble
model simulate heat wave event with better proximity to IMD ob-
servations for both the IMD and IITM criteria over India while GFDL-
CM3, MPI-ESM-LR and NorESM-1 M of CCAM ensemble can be of
employed to study heat waves in some regions after improvement in the
models.

Fig. 9. Trend of observed and CORDEX-RCM simulated total number of heat wave events/year using (a) IMD criteria and (b) IITM criteria during Mar-Jun
(1971–2005). The trends which are statistically significant at the 10% significance level are only shown.
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4. Conclusion

This study shows the importance of RCM simulated extreme tem-
perature and confirmed the previous studies regarding the same. The
analysis shows that both the RCMs were able to successfully simulate
heat wave events in the northwestern, central and south-central region
where the events are most pronounced according to the observation
(IMD and IITM criteria). It was also found that variance scaling bias
correction method removes bias and improves model simulations in
capturing temperature variability. LMDZ4 and GFDL-ESM2M were
found to be the best performing models in simulating heat wave fre-
quency and spatial variability similar to observation. Whereas CCSM4
and ACCESS 1.0 overestimated heat wave frequency and spatial oc-
currence over India.

Long term trend analysis of heat wave events presents a different
narrative of the model performance. LMDZ4 and GFDL-ESM2M showed
consistency in significantly increasing trend with the observation.
However, it was overestimated in some regions. CNRM-CM5, ACCESS
1.0 and CCSM4 were not able to significantly reproduce heat waves
over India showing opposite trends to that of observed. Hence, they
cannot be used to study heat wave characterisation and changes
without improvement in them. The study also found that GFDL-CM3,
NorESM1-M and MPI-ESM-LR can be further improved and explored to
study heat waves over India particularly in Western, Central and South-
Central region. The

Although the trend analysis did not follow the observed heat wave
trend for all of the heat wave regions, the results suggest LMDZ4 and
GFDL-ESM2M best performing models (RegCM4 ensemble). Thus,
LMDZ4 and GFDL-ESM2M can be used for future projection studies as
heat waves are strengthening with rising temperature. The study will be
useful in understanding the uncertainties in CORDEX-SA RCM projec-
tions of heat wave events over India and also suggest to study different
parameterisation schemes that may lead to further refinement in the
representation of the land-atmosphere processes and atmospheric cir-
culation interaction in the RCMs to capture heat waves signature well.
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