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Abstract
Boro rice, an emerging low-risk crop variety of rice, cultivated using residual or stored 
water after Kharif season. To enhance the quality and production of rice, potassium (K) and 
phosphorus (P) are the common constituents of agricultural fertilizers. However, excess 
application of fertilizers causes leaching of nutrients and contaminates the groundwater 
system. Therefore, assessment and optimization of fertilizer dose are needed for better 
management of fertilizers. Towards this, the present study determines the path, persistence, 
and mobility of K and P under the Boro rice cropping system. The experimental site con-
sisted of four plots having Boro rice with four different fertilizer doses of nitrogen (N), P, 
K viz. 100%, 75%, 50%, and 25% of the recommended dose. Disturbed soil samples were 
analysed for K and P from pre-sown land to tillering stage at 0–5, 5–10, 10–15, 15–30, 
30–45, and 45–60 cm depths. Simultaneously, K and available P were also simulated in the 
subsurface soil layers through the HYDRUS-1D model. The statistical comparisons were 
made with RMSER, E, and PBIAS between the modelled values and laboratory-measured 
values. Although, the results showed that all the treatments considered had agreeable simu-
lations for both K and P, the K simulations were found to be better as compared to P simu-
lations except for 25% where P simulations outperformed K. The simulated concentration 
at all doses was found most appropriate when measured for the subsurface layers (up to 
45 cm), while showed an underestimation in the bottom layers (45–60 cm) of soil.
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1 Introduction

India has one of the world’s largest land areas (44 million ha) under rice cultivation provid-
ing a 21% contribution to global rice production accounting for 148.3 million tonnes of 
rice production making it the second largest producer of rice in the world (CO et al. 2011 
In Asia, more than two billion people are getting 60–70% of their energy requirement from 
rice and its derived products (FAOSTAT Database 2014). According to the FAO 2005 
report, paddy alone consumes 31.8% of the total country’s fertilizer ingested into the soil. 
Rice cultivation consumes a significant amount of fertilizer in India which has made paddy 
fields a large contributor to non-point source pollution. The understanding of nutrient/fer-
tilizer transformation and transport in the case of paddy fields is very limited due to mul-
tipart interactions between the soil, water, and biomass (De Datta 1986). Our understand-
ing of the production factors and constraints, which tend to reduce yield and productivity 
in rice farming, are still very limited to help formulate proper strategies to tackle them 
(Sarangi et al. 2014).

The word “Boro” is a special type of rice cultivated in the Rabi season. Since there is 
a continuous increase in irrigation facilities and less dependence on rain in agriculture, 
the production of these rice varieties has amplified over the past few decades. In addition, 
farmers favour growing rice in the dry season as it offers lower risks and higher productiv-
ity in Boro rice in Rabi season than Kharif rice. Therefore, Boro rice offers a great way to 
boost and alleviate rice production in the eastern Indian states of Assam, Bihar, Odisha, 
Uttar Pradesh, and West Bengal (Singh 2003). Hence, Boro rice is now being cultivated 
outside the areas of its traditional boundaries leading to the emergence of a new cropping 
system which is now increased from 1.35 million hectares in 1991 to 2.95 million hectares 
in 2000 (Lal et al. 2013).

The expansion of Boro rice cultivation outside the traditional boundaries requires an 
increase in intensive use of agrochemicals as Indian soils are low to medium in macronutri-
ents (FAO 2005). In continuous cropping, the addition of prejudicial and unmanaged nutri-
ent (nitrogen or phosphorus alone) supply in form of chemical fertilizers without organic 
manure has resulted in a reduction in crop productivity and soil fertility (Masto 2004). K 
and available P are nutrients that often limit agricultural production in tropical soils hence 
they are principal constituents in many fertilizer formulations (Moterle et al. 2016). Agri-
cultural practices have to be created to monitor the quantity of fertilizer still present at vari-
ous soil depths so that its effects can be examined on groundwater and an assessment can 
be made for the consecutive fertilizer input for the next crop period to combat overdosing 
of fertilizers in agricultural fields. For doing so, forecasting subsurface pathways of water 
and pollutants (nutrient and pesticides) in paddy cultivation becomes crucial to control 
non-point sources of pollution. Sub-surface modelling is an effective, less time-consuming 
way to avoid tedious and expensive methods of assessment and reassessment of nutrients 
that are present in soil from agricultural or other practices with minimal input data. It is 
reported that models are well-versed in prediction and simulation for agricultural manage-
ment and interactions that cannot be measured physically. Moreover, studies on P and K 
simulations are not very well-documented in the Indian marginal farming system.

The finite element model determining the persistence of pesticides has already been 
found successful hence widening our understanding regarding these models to determine 
the overdosing of the macronutrient would be the next logical step in the process (Gupta 
et  al. 2014a). The present study undertaken determines the persistence and mobility of 
K and available P under real hydro-meteorological and cropping field conditions using 
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HYDRUS 1D. The outcome of this study would improve our understanding of the behav-
iour of P and K under real field conditions in the case of directly seeded rice (DSR).

2  Materials and methodology

2.1  Site selection

The agricultural farm site of BHU is one of the government-sponsored site having sophis-
ticated sensors for hydro-meteorological measurements, temperature, soil moisture etc. All 
the four plots selected were hydraulically separated from each other by impermeable barri-
ers of the wall of thickness 12 cm up to depth of 170 cm, which prevents subsurface water 
flow and intermixing of treatments across plots. The plots are also equipped with flow 
meters, a controlled irrigation system, etc. Hence, the site is ideal for subsurface modelling 
because of systematic arrangement and availability of equipment, data, etc. The 04 identi-
cal experimental plots were used, each plot measures 4 m long and 4 m wide in area. The 
layout of the field is provided in Fig. 1. The field experiment plots were randomly selected 
out of all plots present at the site. The climate of the U.P. (East) is primarily defined as 
humid subtropical with dry winter.

2.2  Methodology

The flowchart for the complete methodology is provided in Fig. 2. The details of the same 
are presented in this section and Sect.  3. The field preparation started on February 22, 
2018. The Boro rice variety used was Malviya Hu105. The first split of NPK fertilizer was 
added after manual ploughing and levelling off the field followed by rice seed line sow-
ing. The line-to-line distance was kept at 20  cm apart while the plant to plant was kept 
2 cm apart in the same line. The dry rice seed was sowed in these beds. The water was 
sprinkled to moisten the field enough for initial growth. Further, the irrigation of the crop 

Fig. 1  Layout of fertilizer treatment design (left) and on field plantation image at 34  days after sowing 
(right) (note: percentage in figure represents the percent amount of recommended fertilizer dose added in 
the plots)
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was not fixed but was accounted for at each event. It changed according to the stages and 
seasonal variation to meet the real condition requirements. Hand weeding was done every 
15–20 days. The fertilizer splits were added according to the treatment design as described 
in Sect.  2.3. All the reagents used for various tests were of analytical grade. A Hitachi 
UV–visible spectrophotometer model, U-1500, with 1  cm quartz cells cuvette was used 
for determination of P residue in the soil while Flame Photometer was used for K analysis.

2.3  Treatment design and soil analysis

The treatment scheme of fertilizer with its source is given in Table 1 with details of ferti-
lizer application in Table 2. The diammonium phosphate and muriate of potash were added 
as a source for P and K, respectively, which were locally obtained as used by the farmers. 
The recommended dose prescribed by IRRI is 50 kg ha−1 for K and 65 kg ha−1 for P for 
rice in India. So, the treatments involved T1—100%, T2—75%, T3—50%, and T4—25% 
of the recommended dose for both K and P. K and P were applied only during the first split 
of fertilizer application.

The soil sampling was carried out in each of the four plots at four growth stages as 
mentioned in Table  3 for the soil profile at the depths: 0–5  cm, 5–10  cm, 10–15  cm, 
15–30 cm, 30–45 cm and 45–60 cm. The two soil samples collected from the same plot at 
each layer were used to create a composite sample. The samples were stored in Ziploc soon 

Fig. 2  Flowchart of the utilized methodology
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after extraction from the plots. The initial concentration of available P and K in the soil 
was determined before the application of the fertilizer for all four plots. The samples were 
immediately stored under refrigeration conditions until analysis. The refrigerated soil sam-
ples were oven-dried, grounded, and sieved before available P was experimentally meas-
ured using the Olsen method (INTER 2011) and K was analyzed using Flame Photometer 
(Pawar et al. 2009). A total number of 120 samples were collected from the four plots dur-
ing the experiment. The field plot is supported with daily ground-based measured data for 
daily metrological data like precipitation, sunshine hour, mean temperature, wind speed, 
etc. These data were recorded during the whole crop trial each day.

3  Numerical simulations

The transport of available P and K in the case of Boro rice was numerically simulated 
using Hydrus-1D (Šimunek and van Genuchten 2008). The detailed setup of Hydrus-1D 
and its parameterizations are provided in the following sections.

3.1  Time information

Time discretization included giving an initial time step 1 × 10−4 day, maximum time step 
0.1-day, and minimum time step 1 × 10−5 day. The amount of water used for irrigation was 
added to the rainfall received (Behera and Panda 2011). The daily reference evapotran-
spiration  (ET0) was calculated using the FAO Penman–Monteith method (Zotarelli et al. 
2010). It is used to recognize maximum rates of plant transpiration and soil evaporation. 
This helps calculate the potential transpiration for the crop (Srivastava et al. 2020).

Table 2  Details of fertilizer split and application dates during trial

Season Date Agricultural activities

Rabi 26.02.18 Rice sowing (seed rate = 130 kg/ha), First split 
fertilizer application NPK (160:65:60)

22.04.18 Second split fertilizer application N
11.05.18 Third split fertilizer application N
01.10.18 Field dried (drainage period)
09.10.18 Harvesting

Table 3  Tabular representation 
of sampling days corresponding 
to plant’s growing stage

DAA days after application

SI no. Date Days after appli-
cation (DAA)

Stage of crop

1 22 February 2018 0 Bare land
2 30 March 2018 34 Germination
3 23 May 2018 86 Seedling emergence
4 02 August 2018 158 Late vegetative
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3.2  Water simulation

The water flow and solute transport in variably saturated porous media in 1D was sim-
ulated. The model evaluates the non-steady unsaturated water flow through Richard’s 
equation

where � is the volumetric soil water content  (cm3  cm−3), h is the water pressure head, and 
time (days), respectively, x is the spatial coordinate (positive upward), D and � is the sink/
drop term  (cm3  cm−3  day−1) and is the angle between the flow direction, respectively. K 
is used for unsaturated soil hydraulic conductivity function (cm day−1). The vertical axis 
(i.e.  = 0° for vertical flow, 90° for horizontal flow, and 0° < � < 90° for inclined flow. 
HYDRUS 1D is able to predict the soil moisture data in space and time with satellite data 
provided for hydro-meteorological modelling applications (Gupta et al. 2014b).

3.2.1  Soil hydraulic model and boundary conditions

Soil water hydraulic properties were the model inputs and calculated using dual-porosity 
model mobile–immobile water mass transfer for both P and K. The dual-porosity formula-
tion for water flow as used in HYDRUS-1D is based on a mixed formulation, which uses 
Richards Eq. (1) to describe water flow in the fractures (macropores), and a simple mass 
balance equation to describe moisture dynamics in the matrix as follows (Šimunek et al. 
2003)

where, Smo and Sim are sink terms for both regions, and Γw is the transfer rate for water 
from the inter- to the intra-aggregate pores.

The built-in Rosetta module in Hydrus 1D calculates hydraulic parameters (Garg and 
Gupta 2015), which are presented in Table 4. The module gives values of �res  = residual 
water content, �sat = saturated water content, p = coefficient related to n, the pore size dis-
tribution index (–), n = pore size distribution index (–), ks = hydraulic conductivity, l = pore 
connectivity, usually 0.5.

The water flux type of boundary condition was applied at the upper boundary of the soil

where s0 (cm day−1) is the prescribed values of the soil water flux at the upper boundary. A 
free drainage boundary condition was selected at the bottom of the soil profile,

(1)
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3.3  Solute movement in soil

A dual-porosity model was used for solute transport (Šimunek et  al. 2003). The dual-
porosity model with physical and chemical non-equilibrium was selected to acknowledge 
the macropore flow due to the high infiltration rate measured. This model divides fluid flow 
into mobile and immobile domains with first-order advection and diffusion between the 
domains. The initial concentration profiles of P and K concentration were measured in the 
unsaturated soil zone at the start of the study at the time, t = 0. At the upper soil surface, a 
concentration boundary condition was applied

where ci is the initial solute concentration and d = depth of soil profile.
At the lower boundary, a finite column of zero concentration was assumed.

(6)C(d, t) = ci(d, 0), for − 60 ≤ d ≤ 0

(7)
�ci

�d

||||d→60

= 0

Table 4  Parameters of van Genuchten functions for soil water retention

Treatment Depth (cm) θr  (cm3  cm−3) θ  (cm3  cm−3) θ  (m−1) n Ks (cm  d−1) l

T1 0–5 0.078 0.430 0.036 1.560 24.96 0.5
5–10 0.073 0.450 0.010 1.509 21.46 0.5
10–15 0.069 0.424 0.006 1.608 19.52 0.5
15–30 0.074 0.435 0.007 1.580 17.25 0.5
30–45 0.068 0.402 0.010 1.5180 09.03 0.5
45–60 0.063 0.383 0.009 1.524 08.13 0.5

T2 0–5 0.069 0.428 0.011 1.500 15.20 0.5
5–10 0.070 0.427 0.009 1.536 15.67 0.5
10–15 0.073 0.433 0.008 1.566 16.03 0.5
15–30 0.046 0.373 0.008 1.578 26.18 0.5
30–45 0.057 0.384 0.011 1.502 11.50 0.5
45–60 0.040 0.344 0.011 1.490 17.48 0.5

T3 0–5 0.052 0.426 0.006 1.627 27.00 0.5
5–10 0.048 0.435 0.006 1.610 30.02 0.5
10–15 0.051 0.396 0.006 1.647 18.04 0.5
15–30 0.067 0.413 0.007 1.584 14.79 0.5
30–45 0.037 0.350 0.010 1.526 19.00 0.5
45–60 0.048 0.361 0.010 1.507 12.76 0.5

T4 0–5 0.074 0.453 0.009 1.528 23.86 0.5
5–10 0.073 0.452 0.010 1.510 22.56 0.5
10–15 0.070 0.439 0.006 1.617 26.86 0.5
15–30 0.067 0.413 0.007 1.584 14.79 0.5
30–45 0.066 0.388 0.010 1.471 16.42 0.5
45–60 0.061 0.372 0.009 1.496 16.56 0.5
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3.4  Solute transport and reaction parameter

As described above, some of the solute transport parameters required by the numerical model 
were obtained from the available literature. Longitudinal Dispersion coefficient was taken 
as 6 cm as conventionally, longitudinal dispersivity has been approximated to be 10% of the 
sample length in the direction of flow (Lallemand-Barres and Peaudecerf 1978). The calcu-
lated infiltration rate was 5.4 cm/h, which justifies the high saturated hydraulic conductivity 
(Ks) as the field was not puddled. Fraction was taken as 1 as all sorption sites are in contact 
with mobile water. The saturated volumetric immobile water content was varied from 0.01 
(Freiberger et  al. 2018) to 1.01. Diffusion coefficient for orthophosphate (most absorbable 
form of P) in water solution was taken from the average value listed in (Hatfield et al. 1966; 
Khan et al. 2009). The diffusion coefficient for potassium chloride (Muriate of Potash) was 
taken from (Lobo et al. 1998; Ernani et al. 2002). Kd (the ‘weighted’ linear sorption/distribu-
tion coefficient)  (cm3  mg−1) for P was adjusted to 14 for loamy soil, which was well within the 
ranges as compared to earlier studies (Freiberger et al. 2018) and (Qiao 2014) while for K it 
was taken from (Vilela et al. 2018) for loamy soil. α, solute transfer coefficient was taken from 
(Freiberger et al. 2018).

3.5  Root water and nutrient uptake

HYDRUS (1D) has a generalized adsorption equation, which may be converted to Freundlich 
Langmuir or linear adsorption isotherms depending on empirical coefficients. The present 
study assumed linear adsorption isotherm for P (Freiberger et al. 2018). The value of absorbed 
P and K was determined by (Feddes et al. 1978) equation as follows, achieved when coeffi-
cient �k  = 1 and �k  = 0 in Eq. (8)

where, S = adsorbed P or K (g/cm3). � is the coefficient of root water uptake.
Since pH of the soil shows that the soil was alkaline, saline stress condition selection in the 

model was ruled out. The solute uptake in water is dependent on Michaelis–Menten constant 
and the minimum concentration for uptake was taken from Teo et al. (1992), while active root 
uptake was taken from Teo et al. (1995) for both P and K. The passive root uptake was set at 
0.1 for entire crop season as (Qiao 2014).

3.6  Root growth

The root growth parameter in the model is described by the logistic growth function that is 
defined as follows (Šimunek et al. 2008)

(8)S =
�C�

1 + �C�

(9)Dr(t) = Dmfr(t)

(10)fr(t) =
D0

Do +
(
Dm − Do

)
e−rt
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where, Dr (t) is the root depth at time t (cm); Do is the initial seeding depth, (cm); Dm is the 
maximum root depth (cm); t is the number of days after planting; r is the root growth. The 
maximum root depth of Boro rice was 42 cm.

3.7  Space discretization

The soil profile of 60 cm depth was discretized into 149 linear elements with 150 nodes. 
Smaller size elements were taken close to the transition zones which were nearer to the 
surface within the chosen soil depth (Gupta et al. 2012). Galerkin-type linear finite element 
scheme is used for the spatial distribution of the variables in Eq. (1). All these regions were 
selected based on their varying soil properties, in order to ensure a real and stable numeri-
cal simulation of the model.

4  Performance assessment

Relative root-mean-square error (RMSER), percentage bias (PBIAS), and Nash–Sut-
cliffe modelling efficiency (E) (Nash and Sutcliffe 1970; Mathevet et al. 2006) are used in 
assessing the level of agreement between the simulated and measured available P and K 
concentrations.

RMSER is defined as

where MSE is the mean square error, M̄ is the measured mean value, M is the measured 
available P or K concentration, S is simulated available P or K concentration corresponding 
to measured value and n is the number of data points. The smaller the values of RMSER, 
the better is the match between simulated values and measured values.

Percentage bias (PBIAS) helps in understanding the nature of the simulated data to be 
smaller or larger from the measured values. The optimal value of PBIAS is 0.00, with low-
magnitude values corresponding to more accurate model simulation. Here, positive val-
ues correspond to overestimation bias, whereas negative values correspond to model bias 
underestimation.

E is defined as a measure of the deviation of simulated value from measured values.

Modelling efficiencies (E) can range from − ∞ to 1 where E = 1 means a perfect match 
between simulated values and measured data values. A negative E value states that the use 

(11)RMSER =

√
MSE

M̄

(12)MSE =
1

n

n∑

i=1

(M − S)2

(13)PBIAS = 100

∑n

i=1
(M − S)

∑n

i=1
M

(14)E = 1 −

∑n

i=1
(M − S)2

∑n

i=1
(M − M̄)2
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of simulated values can increase the chance of deviation from the measured than using the 
mean observation. E = 0 indicates that the model predictions are as close as the mean of the 
measured data.

5  Results and discussion

5.1  Evaluation of soil and crop data

The soil of the site has been classified as alluvial soil. Soil physical properties were ana-
lysed (Table 5) for the soil profile of 0–60 cm at an interval mentioned above with three 
replicates. The percentages of sand, silt, and clay were determined by Bouyoucos Hydrom-
eter. The texture percentage was utilized in the determination of soil type based on the soil 
textural triangle (USDA). The soil type was found to be loamy in all the plots with a slight 
variation at 10–30  cm depth for Plot 3 and 4, where the soil was silty loam. Bulk den-
sity was estimated from the soil samples on the field. The soil organic matter (SOM) was 
calculated using the method given by (Walkley and Black 1934). The Keen Rackzowski 
box (Keen and Raczkowski 1921; Salalia and Walia 2017) was used to calculate the field 
capacity. Eutechmeter was used to measure soil pH and Electrical Conductivity (EC).

The meteorological data for the study period are shown in Fig.  3. The data for crop 
growth (LAI) and root growth were also collected from the field at regular intervals, which 
are used as input in HYDRUS 1D. These parameters are shown in Fig. 4. Figure 5 shows 
the image of photographs taken on 34 days after application of entire plants for each of the 
four treatments.

5.2  Model parameterization and establishment

The values of various coefficients taken from the literature were varied according to the 
soil conditions and climate. Some of the coefficients were found to be more sensitive than 
the others. The sensitivity analysis was done to check with minimal change in input param-
eters there was a maximal change in output parameters. The ranges of dual-porosity coef-
ficients were taken from Haws et al. (2005) and were then varied one at a time to see the 
most sensitive parameter. The combination of varying these variables was also done within 

Table 5  Soil physical properties

a Average texture for all plots is considered as loamy

Depth 
(cm)

Soil pH EC %Sand % Silt %Clay Soil  typea Bulk 
density (g/
cm3)

Avg.  %SOM Field 
capacity 
(%)

0–5 7.79 86.74 41.88 19.86 38.25 Loamy 1.27 0.797 23.22
5–10 7.79 86.10 41.92 19.43 38.65 Loamy 1.27 0.865 22.92
10–15 7.87 78.10 35.58 16.86 46.65 Loamy 1.32 1.014 22.45
15–30 7.79 80.46 36.84 15.75 47.40 Loamy 1.45 1.190 21.20
30–45 8.10 65.12 38.44 16.55 45.00 Loamy 1.50 0.784 19.76
45–60 7.91 64.55 39.50 18.35 42.15 Loamy 1.50 0.703 19.60
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the range found in the literature. The root active uptake was found to be the most sensi-
tive and after much calibration was set at 0.01. The solute uptake in water is dependent 
on Michaelis–Menten constant and minimum concentration for uptake which was varied 
between 0.5 to 0.0062 and 0.1 to 0.0023, respectively (Yan Hock Teo et  al. 1995). The 
partition coefficient (Sikder and Hossain 2018) was varied between 6 to 17 for available 
P and 5 to 8 for K. The immobile water concentration was varied between 0.01 and 1.01 
and the selected range was 0.05–1.01. The irrigation water was also having P whose value 
was taken in g/m3 from groundwater yearbook 2014–2015 (Uttar Pradesh), and then values 
were adjusted according to irrigation water volume. The coefficient calibration was carried 
out for T1 only. After calibrating these parameters for T1, the average simulated concentra-
tion along with the measured concentration for calibration treatment is shown in Fig. 6a, b 
for K and available P, respectively. The statistical measures for the same are also presented 
in Table 6. The average E achieved during calibration in the soil profile was 0.54 and 0.47 
for available P and K respectively. The validation was performed for T2, T3, and T4 using 

Fig. 3  Meteorological parameters used in the study
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the calibrated parameters. Here, all the coefficient values were kept the same as in T1, and 
data like fertilizer’s concentration, the volume of water added, root length, LAI, bulk den-
sity, soil hydraulic parameters, and initial concentration of P were changed as measured on 
the field for the three treatments − T2, T3, T4. The average simulated concentration along 
with the measured concentration for validation treatments are shown in Fig. 6c, d for K 
and available P, respectively. Overall plot analysis in Fig. 6c, d for K and available P shows 
that the simulated data follow the measured data trend for T2 and T3 in the soil profile. 

Fig. 4  Root length measurement record for entire crop growth period a 100%, b 75%, c 50%, d 25% of rec-
ommended fertilizer dose

Fig. 5  Root length a 100%, b 75%, c 50%, d 25% of recommended fertilizer dose after 34 DAA
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Simulated concentration values were then also statistically compared with measured val-
ues, shown in Table 6, to quantify the agreement for the validation scenario. As given in 
Table 6, the efficiency agreement within depths and treatments went up to 0.94. However, 
the average E in the soil profile of 60 cm depth for the three treatments, T2, T3, and T4 is 
0.23, 0.50, and 0.89, respectively, for available P and 0.30, 0.57 and 0.80, respectively, for 
K. The validation results suggest that HYDRUS 1D can be utilized for available P and K 
simulations with proper calibration.

5.3  Performance of model with different depths and treatments

The treatments in each plot depend upon the variation of concentration of K and available 
P from the recommended dose. Figures 7a and 8a show the depth-wise variation in con-
centration from the recommended dose of fertilizer in T1 for K and P, respectively, under 
Boro rice cultivation obtained after the calibration of the input parameters. Although the 
modelled values for both the elements are little overestimated, the model shows the closest 
agreement on 34 days after application (DAA) for both which is shown in Table 6, i.e. with 
RMSER and E values of 0.445 and 0.806 for potassium and 0.496 and 0.728 for P, respec-
tively. The lowest P concentration was recorded for the T1 among all the other treatments 

Fig. 6  Average concentration simulated and measured: (a) Potassium: (red solid line, red circle) T1, (b) 
Phosphorus: (red solid line, red circle) T1, (c) Potassium: (blue solid line, blue circle) T2, (green solid line, 
green circle) T3, (yellow solid line, yellow circle) T4 and (d) Phosphorus: (blue solid line, blue circle) T2, 
(green solid line, green circle) T3, (yellow solid line, yellow circle) T4
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as the plant growth was the highest in this treatment; hence, it consumed the most available 
P available to it.

Figures 7b and 8b represent T2 for K and available P concentration, respectively. The 
graph suggests that mostly the model underestimated concentration. The model efficiency 
was found to be lowest at depths 30–60 cm for both the elements. This shows the model’s 
inability to predict the concentration at later days and deeper depths of the crop. The meas-
ured concentration at (0–10) cm at 1DAA in the case of K and (5–15) cm at 158 DAA in 
the case of available P was considered as an outlier from the pattern as shown in Figs. 7b 
and 8b. This uneven concentration can easily be pointed out with the underestimated 
results of PBIAS. The PBIAS clearly shows more than underestimation at all DAA by the 
model unlike the simulated values of T1 treatment plots for both the elements. The E value 
varies from 0.032 to 0.774 for K and 0.067 to 0.551 for available P (Table 6). The RMSER 
suggests that the model simulated values are most appropriate at 34 DAA. Figures 7c and 
8c depict depth-wise variation for T3 for simulated K and available P concentration val-
ues, respectively. The model simulated values are more in agreement with real values at 
all depths almost at all DAA of fertilizer for both the element P and K. The PBIAS values 
suggest that the model simulated concentrations, in general, are underestimated (Table 6).

Similarly, Figs. 7d and 8d represent a depth-wise variation of T4 for K and available P 
concentration, respectively. These two figures highlight the best agreement at all DAA at 
all depths. The E values for T4, Table 6, were found consistently high among other treat-
ments, suggesting good agreement between the measured and simulated concentrations for 
both K and P. The RMSER and PBIAS values were also lowest for T4 ranging from 0.232 
to 0.884 and − 0.210 to 30.376. PBIAS values suggest little overestimation in the case of P.

The day-wise variations in Figs.  9 and 10 for K and available P for all treatments, 
showed that model values are in close range with the measured values at all days and 
depth except at the depth between (30 and 60) cm at 86 and 158 DAA. Either the model 

Table 6  Statistical performance analysis for K and P concentrations

Operations Treatments Days Statistical analysis for K Statistical analysis for P

RMSER PBIAS E RMSER PBIAS E

Calibration T1 1 0.738 35.841 0.435 1.370 51.801 0.040
34 0.445 −  7.786 0.806 0.496 07.309 0.728
86 1.040 23.591 0.352 0.522 − 15.910 0.759

158 0.685 − 42.710 0.412 0.746 − 32.536 0.634
Validation T2 1 1.014 94.522 0.032 1.144 0.916 0.067

34 0.433 4.626 0.774 0.877 − 0.143 0.551
86 1.862 − 85.296 0.324 0.905 − 0.072 0.082

158 0.861 − 74.437 0.096 0.897 21.741 0.447
T3 1 0.278 − 6.606 0.910 1.035 0.341 0.052

34 0.470 7.486 0.747 0.796 0.839 0.770
86 0.907 17.745 0.300 0.615 1.119 0.686

158 0.797 − 73.395 0.328 0.501 − 0.530 0.262
T4 1 0.459 30.376 0.857 0.232 3.990 0.938

34 0.536 13.266 0.602 0.388 − 0.638 0.802
86 0.728 − 14.689 0.716 0.452 − 0.210 0.941

158 0.884 − 15.115 0.956 0.468 − 0.766 0.904
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simulation underestimates or overestimates at these depths and days. The least efficiency 
is encountered in simulating at 0–5 cm and 30–60 cm for either of the element simulated. 
Statistical performance for measured K concentration at the end of 158 DAA was less 
accurate than that of the available P at the end of 158 DAA although both the element’s 
concentration was easily traceable in the soil at the end of crop period. This suggests the 
model is more suitable for simulation of available P than K at lower concentration levels.

Fig. 7  Potassium simulated and measured concentration within 60 cm at (red solid line, red circle) 0 DAA, 
(blue solid line, blue inverted triangle) 34 DAA, (green solid line, green right triangle) 86 DAA, (yellow 
solid line, yellow circle) 156 DAA for treatments a T1, b T2, c T3 and d T4, respectively
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In this experiment after analysing every treatment chosen, it can be seen that the simu-
lated values at mid days of the crop are closer to measured values than later days, 158 DAA 
of fertilizer where it mostly underestimates. This may be due to the fact that currently, the 
selection of crops in the HYDRS 1D version is very limited. The closest crop relating to 

Fig. 8  Phosphorous simulated and measured concentration within 60  cm at (red solid line, red circle) 0 
DAA, (blue solid line, blue inverted triangle) 34 DAA, (green solid line, green right triangle) 86 DAA, (yel-
low solid line, yellow circle) 156 DAA for treatments a T1, b T2, c T3 and d T4, respectively
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Boro rice found was corn crop but even the corn crop duration is 180 days. This may be the 
reason of the constant underestimation from the real values at later days of the crop. The 
model shows best results with T4 (25%—from the recommended dose) with the calibrated 
values as compared to T2 and T3. The reduction in the concentration of fertilizer reduces 

Fig. 9  Potassium at depths as per legends: a–c (T1), d–f (T2), g–i (T3), and j–l (T4)
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the difference between the measured and real values. Hence, low concentration is found to 
be simulated efficiently by the model. Since the direct-seeded rice crops are not covered 
in the HYDRUS 1D model, other versions like HYDRUS NICA (Non-Ideal Competitive 
Adsorption) with an aqueous chemical model NICA might be more suitable for elements 
like P to improve the simulations of P transport in soil and water (Nohra et al. 2004).

The constant high measured values of available P in the field samples at later stages 
of the crop cycle may be attributed to nitrogen fertilizer added in splits. Nitrogen 

Fig. 10  Available P at depths as per legends: a–c (T1), d–f (T2), g–i (T3), and j–l (T4)
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fertilizer releases  NH4
+ ions, which makes the soil acidic and in turn increases P solubi-

lization. P solubilization leads to an increase in P availability. Nitrogen in the soil also 
results in a surge of P uptake by increasing plant root length and P availability in soil 
(Havlin et al. 2016). Exchangeable K ions (40–500 ppm) hold on to the solid phase of 
soil on clay and organic matter by electrostatic forces and moves into the soil solution 
through exchange with other cations. In soil solution where hydrated  Ca2+ is bigger than 
K, it enlarges the interspace layer which is compensated by more  K+ (Sekhon 1999). 
Since at deeper depths (45–60) cm clay content was more (Table 5) and at later days of 
the crop (86 DAA) highest organic matter content was also measured, which explains 
the increase in K at later days of the crop (i.e. either 86 DAA or 158 DAA).

The cation complex may also have increased in later DAA of fertilizer due to direct 
sowing of seed without ploughing (while preparing the seedbed). Additionally, the field 
was prepared without puddling and that may have also contributed to high organic mat-
ter and hence the increase in K concentration (Benedetti et al. 1996; Haefele et al. 2011). 
The K and P concentration at deeper depths (45–60) cm) layer of soil is dynamic and is 
constantly high in concentration than the rest of the other layers due to the absence of 
roots or less availability of roots to extract these minerals.

6  Conclusion

In this study, four Boro rice crop plots were chosen with variations in the amount of 
K, available P from the recommended dose of fertilizer. The behaviour, tenacity, and 
movement of K and available P were studied by determining the concentration of K 
and P in soil experimentally and numerically using the HYDRUS 1D model. The model 
was found suitable for simulating K and available P concentration in soil with Boro 
rice crop after careful calibration of parameters. The comparison between the simulated 
and observed data suggests that the model is more suitable for simulations at low-level 
concentrations of K and P than higher concentration levels. This analysis also makes 
it evident that the model is more suitable for upper depths up to 45 cm than the lower 
depths (45–60 cm). Also, the model predicted well in early days of the crop rather than 
in later days.

The study also indicates regulation in fertilizer application can be brought using the 
HYDRUS 1D model. The numerical simulations with the recommended fertilizer dose 
can help in predicting the residual K and available P in the soil at the end of the crop 
cycle as in the current study traceable amounts were detected after 158 DAA. Although 
their transformation and degradation can occur reducing the residue of the elements in 
soil, two cropping seasons in India may likely lead to persistence rather than being deg-
radation. Thus, simulations can help in regulating fertilizer dose reducing carry-over 
effects, which may ultimately lead to the safer dosage and better management of K and 
P applications in soil. Sustainability in agriculture can only be brought by regulating tra-
ditional agriculture practices by accounting for these non-point anthropogenic sources.
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