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• Morbidity link with climate, anthro-
pometry and SES in children are re-
ported.

• URTI and GIT constitute 78% of the cases
of infectious diseases in children.

• Maximum temperature and humidity
(absolute/relative) are important drivers.

• Family income/month, water source, and
hand washing are important SES drivers.

• High proportion of children found in
stunting, wasting, and underweight con-
ditions

• Attributable Fraction (AFx) due to cli-
mate ranged from 9 to 18% for various
diseases.
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Nutritional status and exposure response relation of temperature and child morbidity in Varanasi.
Note: GIT represent Gastrointestinal Tract Infections, URTI represent Upper Respiratory Tract Infection
Blue shaded region represent 95% confidence interval. Dashed black line represent the optimum temperature.
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The effects of climate on infectious diseases could influence the health impacts, particularly in children in coun-
tries with the unfair socioeconomic conditions. In a prospective cohort of 461 children under 16-years-of-age in
Varanasi city, India, the association ofmaximum-temperature (Tmax), relative humidity (RH), absolute humidity
(AH), rainfall (RF), wind-speed (WS), and solar radiation (SLR) with prevalent infectious diseases (Diarrhea,
Common cold and flu, Pneumonia, Skin-disease and Malaria, and Dengue) was examined using binomial-
regression, adjusting for confounders and effectmodifiers (socioeconomic-status; SES and child anthropometry),
from January 2017 to January 2020. Attributable-fraction (AFx) was calculated due to each climate variable for
each infectious disease. The result showed that each unit (1 °C) rise in Tmax was associated with an increase
in diarrhea and skin-disease cases by 3.97% (95% CI: 2.92, 5.02) and 3.94% (95% CI: 1.67, 6.22), respectively,
whereas, a unit decline in Tmax was associated with an increase in cold and flu cases by 3.87% (95% CI: 2.97,
4.76). Rise in humidity (RH) was associated with increase in cases of cold and flu by 0.73% (95% CI: 0.38, 1.08)
and malaria (AH) by 7.19% (95% CI: 1.51, 12.87) while each unit (1 g/m3) decrease in humidity (AH) observed
increase in pneumonia cases by 3.02% (95% CI: 0.75, 5.3). WS was positively associated with diarrhea (14.16%;
95% CI: 6.52, 21.80) and negatively with dengue (17.40%; 12.32, 22.48) cases for each unit change (kmph). RF
showed marginal association while SLR showed no association at all. The combined AFx due to climatic factors
ranged from 9 to 18%. SES and anthropometric parameters modified the climate-morbidity association in chil-
dren with a high proportion of children found suffering from stunting, wasting, and underweight conditions.
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Findings from this study draw the attention of government and policymakers to prioritize effectivemeasures for
child health as the present associationmay increase disease burden in the future under climate-change scenarios
in already malnourished paediatric population through multiple pathways.

© 2021 Elsevier B.V. All rights reserved.
1. Background

A considerable number of studies have recognized and emphasized
the climate change issues and their general and regional impacts given
the projected global mean surface temperature (Tmean) is likely to in-
crease by 4.8 °C (Representative Concentration Pathway, RCP 8.5) and
by 3–5 °C during 2081–2100 in India (IPCC, 2013; Kumar et al., 2018).
Moreover, northern India is expected to witness much of the increase in
temperature and also an overall shift in rainfall patterns (Basha et al.,
2017; Jha et al., 2021). Such as Uttar Pradesh (UP) observed a significant
increase in annual mean (0–1.5%) and minimum temperature (1.5–3%)
over 107 years (1901–2007) and a declining trend of diurnal temperature
range during 1901–2016 (Mondal et al., 2015; Mall et al., 2021; Singh
et al., 2021a). However, the rainfall observed a decrease by 0–8% (insignif-
icant) in the eastern part of UP over 141 years (1871–2011) (Mondal
et al., 2015).

Climate change presents unprecedented challenges to humankind
through its impact onhuman-madeandnatural ecosystems, anthropocen-
tric and economic activities (Singh et al., 2020). As per the Climate Risk
Index, 2018, India was ranked fifth in the list of climate-vulnerable coun-
tries in the world (Germanwatch, 2018; Mall, 2019). The Lancet Climate
Commission proposed climate change driven by anthropogenic activities
may challenge the gains in public health over the past 50 years (Watts
et al., 2017), and globally, it was estimated that children are to bear 88%
of the burden of disease due to climate change, with the poorest dispro-
portionately affected (Zhang et al., 2007; Perera, 2017). The higher risk as-
sociated with children is due to the combination of physiological
vulnerability aswell as the risk of exposure. According to theWorldHealth
Organization (WHO), under the scenario of no mitigation strategies being
implemented, in 2030, there could be an additional 77,000–131,000
deaths among children under 5 years of age (Lloyd et al., 2014; Bhutta
et al., 2019). Typical childhoodmaladies, suchasdiarrhea, pneumonia,ma-
laria, and other infections associated withmalnutrition, were identified as
most sensitive to climate (Philipsborn and Chan, 2018).

The UP Burden of disease profile shows that in the year 2016,
the percentage of disability-adjusted life years were highest among
1–19 years of age and, infectious diseases like diarrhea and lower respi-
ratory tract infections (LRTI) account for about 40% of deaths (PHFI,
2018). Meteorological conditions aid the development and propagation
of pathogens through their influence on the transport, reproduction,
diffusion, and persistence thus aiding in defining the environmental res-
ervoirs of pathogens and governing the intensity and timing of seasonal
outbreaks (Moors et al., 2013).

As India is already witnessing climate change-related issues, it be-
comes imperative to address the link between climate variability and
related health effects to improve the present capacity to prepare and re-
spond, developing early warning systems and seasonal forecasts that
would allow us to better address the challenges brought forth by cli-
mate change (Xu et al., 2012; Mall et al., 2017; Singh et al., 2019;
Singh et al., 2021b). However, climate change related health impact
studies particularly for children in India is at an early stage. And there
exists a paucity of research-based empirical evidence that quantifies
the impact of various climatic parameters on paediatric health and
non-consideration of SES and anthropometric parameters. Any attempt
to provide the epidemiological evidence associated with climate
parameters over the poorly investigated regions of India will help the
policymakers and the government to avert the risk that may arise due
to climate change. Therefore, there is an urgent need to test the
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hypothesis of whether there exists an indirect and direct cause-and-ef-
fect relationship between climate variability and paediatric health.

In the light of the above, the present study aims 1) to provide in-
sights on the current morbidity burden in children (0–16 years) 2) to
study the association between climatic factors and infectious diseases
(diarrhea (GIT), common cold, and flu (URTI), pneumonia (LRTI), ma-
laria and dengue (VBD), and skin diseases), taking into account compre-
hensive SES and anthropometric variables, 3) to estimate the AFx due to
climate variables that contribute to disease proportion among paediat-
ric. For the present study, Varanasi, a city in UP, India was selected.
The studywill be able to advance our understanding of the environmen-
tal impact of different climate variables on paediatric health and how
the association is influenced by different SES conditions and child an-
thropometry. The evidence from the present studywill help in anticipa-
tion of adverse health effects and strengthen plans for preventive
policies, priorities, and adaptive strategies.

2. Methodology

A community-based “Longitudinal” cohort was established within
the boundaries of the Municipal Corporation of Varanasi among chil-
dren from 0 to 16 years of age. The study was conducted in 26 wards,
of 10 subzones and 5 zones for the period of 3 years; Jan 2017–Jan
2020. The list of selected wards, subzones, and zones, along with the
subzone and zone population is mentioned in table S1 and the demo-
graphic profile of Varanasi city is given in table S2. Fig. 1 shows the geo-
graphical location of the study site (25°16′N, 82°59′E; 82 m MSL).

2.1. The eligibility criteria

The sample of children aged less than or equal to 16 years living in
the selected wards of Varanasi city at the start of the survey was in-
cluded in the present study.

2.2. Sample size estimation

The sample size of the study was determined using an equation by
Daniel (1999), considering an estimate of 66.3% prevalence of the
respiratory disease among children younger than 5 years old (at 95% CI;
Kansal et al., 2008) for Varanasi. Assuming any particular outcome to be
at absolute precision of 5% and a 95% confidence interval of certainty, the
final sample size with a 20% non-response rate was determined to be
431 children up to 16 years old. To eliminate any chance of reduced
power for statistical analysis, the sample sizewas further increased to 527.

2.3. Study settings and data collection

2.3.1. Household recruitment and sample selection
A multistage random sampling technique was used to select the

study participants. From 90 wards, 26 wards were selected by a simple
random sampling technique representing 5 zones and 10 subzones. The
calculated sample sizewas allocated into randomly selectedwards, pro-
portional to the size of the population. From each ward, a simple ran-
dom sampling technique was employed to obtain the respondents
from the number of households with children younger than 16 years
old. If within the household the target population was absent, we
moved to the next household again selected through simple random
sampling. Finally, 288 households and 527 children were selected.



Fig. 1. (a) Map of India showing the location of study site and population density of India, (b) Map of Varanasi city showing sampling sites and population density of different wards.
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After excluding the loss in follow-ups during three years, 249 house-
holds and 461 children were studied.

2.3.2. Obtaining consent and assigning of studyUnique IdentificationNumber
(UID) to the recruited child

The children were recruited in the study after the written consent
was obtained from either of the parents at the time of enrollment either
in English or Hindi (S1). Information's in the consent form was read
aloud and explained to the illiterate parents. The parentswere informed
that they had the right not to respond to questions that they did not
want to and could stop at any point of time in the survey if theywanted.
At the time of the recruitment procedure, each child was assigned a
unique identification number (UID) of 3 digits that are given in order
of the recruitment.

2.3.3. Survey duration and follow up
The data were collected using a face-to-face administrated pretested

semi-structured questionnaire adapted from reviewed articles (S2). A
pre-test was performed in few wards not included in the main survey,
and the necessary modificationsweremade in the questionnaire before
the data collection was undertaken. Parents (mostly mothers) were re-
quested on recalling disease symptoms. A disease eventwas reported as
the occurrence of oneormore disease categories at the timeof thehome
3

visit or in the preceding months (not considering multiple events
within the same month).

The unannounced visits were done every 3–4 months. A total of 11
home visits has been done in 3 years. For each individual, there were a
total of 36 observations from Jan 2017 to Dec 2019.

2.4. Variables

2.4.1. Dependent variable (Operational definitions)
(i) Upper respiratory tract infections (URTI):Mainly include prob-

lems related to common cold and flu, laryngitis, tonsillitis, sinus-
itis. Symptoms include headaches, aching muscles, a stuffed-up
or runny nose, sneezing and a sore throat, difficulty in breathing.

(ii) Lower respiratory tract infections (LRTI; Pneumonia): Mainly
include pneumonia symptoms of cough and fast breathing.

(iii) Gastrointestinal tract infection (GIT): diarrhea, dysentery, gas-
troenteritis, enterocolitis. Symptoms include diarrhea or dysen-
tery, nausea, vomiting, and abdominal cramping.

(iv) Vector-borne diseases (VBD): includes malaria and dengue.
(v) Skin disease: includes scabies, furuncle, impetigo, defined as

vesiculopustular skin lesions which rupture with heaped up
honey-colored crusts.

(vi) Others: includes diseases for which the presenting symptom
can't be categorized into the above-mentioned causes.
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Considering the complexity associated with the etiology of different
diseases grouped in each infectious disease category, in the present
study, all statistical analysis has been conducted on the most prevalent
disease in each infectious disease category, viz. diarrhea (GIT), common
cold and flu (URTI), pneumonia (LRTI), malaria and dengue (VBD), and
skin Disease.

2.4.2. Independent variables

2.4.2.1. Climate variables. The observed daily minimum (Tmin, °C), and
maximum (Tmax, °C) temperature; rainfall (RF, mm), relative
humidity (RH, %), wind speed (WS, Kmph), solar radiation (SLR,
MJ/m2/day) and vapor pressure (in hPa) for the city of Varanasi
from 2017 to 2019 was obtained from India Meteorological Depart-
ment, New Delhi. The AH (g/m3) was also used in the study as one
of the climate parameters that was calculated using the gas law
equation (REA, 2014). Daily observations of climate parameters
was initially checked for data quality and outliers and further aver-
aged for monthly values that were used in the study.

2.4.2.2. Socio-economic, Environmental, and Behavioral variables. At en-
rollment, the information was collected on education, and occupation of
the head of the family, family income/month, house toilet, water filter,
drinking water source, vaccination, open container, house type, hand
washing practice, and street food consumption rate, health insurance,
visit doctor/medical shop, mosquito intervention, and house cleaning.

2.4.2.3. Anthropometric variables. Information on age (date of birth), gen-
der, weight, and height of the child was collected. The information on
theweight and height of the child was reported at each time of the visit.

2.5. Categorization of socio-economic profile

The Socio-Economic Status (SES) of the selected householdswas cal-
culated by scoring different indicators based on the scores given by re-
vised SES scales of Kuppuswamy (Shaikh and Pathak, 2017). These
indicators include education of household head, Ooccupation of house
owner, and family income per month in Rupees. The indicators were
given scores based on their sub-domains or presence or absence. The
scores were summed for a total score for each household. Based on
scores, the SES class was then categorized into three sub-categories:
Lower class, middle class, and Upper class.

2.6. Weight and height measurement

At each visit, the child's weight and heightwere recorded tomonitor
the child's health by calculating body mass index (BMI) adopted from
theWHO trainingmodule (WHO, 2006). To do so a digitalweighingma-
chinewas used that can bear amaximumweight of up to 200Kgs and an
inch of tape to measure the length or height of the child. The children
whowere elder than 2 years of age andwho could stand independently
were weighed standing straight on a weighing machine. Otherwise, if
the child was younger than 2 years or is unable to stand, in that case,
the mother was weighed alone; then the mother and the child were
weighed together and the mother's weight was subtracted from the
combined weight to obtain the child's weight. If the child was less
than 2 years old and if his height was measured standing straight, in
that case, a value of 0.7 cm was added to the height and the result was
recorded as the length in the survey sheet.

2.7. Calculation of body mass index (BMI)

The child's BMI was calculated by dividing weight in kilograms by
the square of height in meters, and the result was analyzed using the
BMI-for-age percentile growth charts made available by the Centers
for Disease Control and Prevention (CDC, 2020) for ages 2 to 16 years
4

separately for boys and girls (Fig. S1 a&b). The BMI-for-age weight cat-
egories and the corresponding percentiles are given in table S3. Each
childwas categorized into a respective category based on their BMI per-
centiles. BMI helps in the screening of weight categories that may be a
cause for serious health problems. A low and high BMI both can put chil-
dren at risk for health issues.

2.8. The Anthro Survey Analyser

In the study, the weight and height were further used to assess child
nutrition status for the most vulnerable age categories of the children
under 5 years of age. For this, an online tool “Anthro Survey Analyser”
developed by the Department of Nutrition for Health and Development,
WHO was used (WHO, 2020). Anthro Survey Analyser allows
performing a comprehensive analysis of anthropometric survey data.
The tool provides analysis for four of the anthropometric indices:
height-for-age, weight-for-age, weight-for-height, and BMI-for-age.
The report provides prevalence estimates by different disaggregation
factors for the five main indicators, namely stunting, wasting, and se-
vere wasting, overweight and underweight (Table 2).

2.9. Data preparation

The climate, SES, and anthropometric parameters were a mixture of
numerical (continuous), categorical (nominal), and ordinal variables.
On that basis, the climate variables, anthropometric variables (age,
weight, and height) were considered numerical variables. The diseases
were included as a categorical variable and categorized as 0 when the
diseasewas absent and 1when the diseasewas present. Similarly, street
food consumption and handwashing practices, presence of the open
container, use of water filter, the presence of house toilet, vaccination
and health coverage, use of mosquito net, and a visit to doctor/medicine
usewere categorized as 0 and 1. Genderwas classified into 1 (Male) and
2 (Female). Education and occupation of house owner, family income/
month, economic class, type of house, and type of water source were
considered as ordinal data and numbered from low to high.

2.10. Statistical methods

2.10.1. Correlation coefficient
The point-biserial, rank biserial, and phi correlation were carried

between the nominal-nomial, nomial-ordinal and nomial-continuous
variables respectively, while spearman's and Pearson's correlation was
calculated between ordinal-ordinal and ordinal-continuous variables
to identify the direction and significance of association between them
(Khamis, 2008). The result of the correlation matrix is presented
in Fig. S2. The study further took into account only the significantly
correlated climate variables, SES, and anthropometric parameters
with disease outcomes for multivariate regression analysis. The
multicollinearity, among the SES, anthropometric parameters, and the cli-
mate variableswas assessed by correlation coefficient. Collinearity among
the two variables was considered if the correlation coefficient value re-
mains >0.7, in that case only one variable was considered for the model
construction. The analysiswas doneusing package “PerformanceAnalytics”
and “ltm”, “sjstats”, “rstatix” in R. Further, the variables were checked for
any autocorrelation in the residuals using Durbin-Watson statistics
(D\\W), that ranges from 0 to 4 (2 indicates no autocorrelation, below
2 indicates positive autocorrelation and above 2 indicates negative auto-
correlation). Any autocorrelation, if exist was consequently removed.
The package “orcutt”was used for D\\W test.

The above statistical tests were two-tailed, and associations with p-
Value < 0.05 were considered statistically significant.

2.10.2. Regression analysis
The use of generalized additive mixed modeling (gamm) over gener-

alized linear modeling (glm) and generalized additive modeling (gam)
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allows dealing with within observation dependencies by using random
intercept for each observation. In the fixed-effect model, we have single
measurement data for each observation that deal with “between” obser-
vation dependencies. Butwhendealingwithdata that is divided into clus-
ters, each participant/observation within a cluster creates a problem of
“within” observation dependencies along with “between” observation
dependencies. The fixed model cannot deal with it but the mixed model
takes into account the “within” observation dependencies by using ran-
dom intercept for each observation and therefore it is used for follow-
up studies (Longitudinal study) (Wood, 2017). Generalized additive
mixedmodels are frequently used for studies that deal with clustered, hi-
erarchical and spatial designs to take into account overdispersion and cor-
related data, where the linear predictors are linearly dependent upon
smooth functions of some other covariates (Lin and Zhang, 1999).

Thus in the present study, generalized additive mixed-effect model-
ing (gamm)was usedwith binomial regressions (log-link), and random
effects for individual IDs to control for potential within-individual-cor-
relation. Seasonality and time trend were adjusted, using penalized
cubic smoothing spline (Peng et al., 2009). Themodel was also adjusted
for potential confounders and effect modifiers (socioeconomic, and an-
thropometric variables).

The generalized additive mixed-effect core model is represented as
follows:

Log E Morbidityð Þ½ �f g ¼ α þ ðβ1 X1ð Þ tð Þ::: βn Xnð Þ tð ÞÞ
þ ðγ1 Y1ð Þ tð Þ:::γn Ynð Þ tð ÞÞ þ f 1 Timetð Þ þ bi ð1Þ

Where, E Morbidityð Þ½ � ¼ 1, if disease on tth month

0, otherwise

(
represent the

morbidity due to each class of infectious disease, viz. diarrhea (GIT),
common cold and flu (URTI), pneumonia (LRTI), malaria and dengue
(VBD), and skin Disease, β is the regression coefficients corresponding
to the climate parameters “X” (monthly Tmax and Tmin, RF, SLR, WS,
RH and AH) over time ‘t’; γ is the regression coefficients corresponding
to the anthropometric/SES/other parameters “Y” over time ‘t’, “n” is the
number of parameters, f is the smoothed function (penalized cubic
smoothing spline) of nonlinear confounding factors such as time, bi ~
N(0,σb

2) is a random-effects intercept for each individual i that accounts
for child-specific variations. Themodels were fit using gamm() function
from the “MASS” library in R.

For model construction, only the significantly correlated parameters
were considered. The stepwise backward regression was used to in-
clude the significant parameterswithin themodel. After running several
iterations considering the correlation between covariates and the out-
come, multicollinearity, autocorrelation, R2, and significance level (p <
0.05), intuitively each model was constructed separately for each dis-
ease class. It is to be emphasized that a separatemodel was constructed
for each disease class based on the significant association of explanatory
climate variables, anthropometric and SES variables with disease out-
comes. Thus the parameters in Eq. (1) vary from disease to disease.
The final parameters that contributed to the model construction for
each disease class can be viewed in Fig. 5.

2.10.3. Dose response relationship
The dose-response curves for different disease categories were

created with the application of penalized cubic spline function on the cli-
mate parameters in a quasi-Poisson semi-parametric regression model
after adjusting other covariates and confounding factors to observe the
changes inmonthly disease prevalence at a different exposure level of cli-
mate parameters. We refitted our core model (Eq. (1)) as follows:

Log E Prevalenceð Þ½ �f g ¼ α þ ð f 1 X1ð Þ tð Þ::: f n Xnð Þ tð ÞÞ
þ ðγ1 Y1ð Þ tð Þ:::γn Ynð Þ tð ÞÞ þ f Timetð Þ ð2Þ

Where f(X(t)) is the smooth function of the monthly average climate
parameter over time t; rest remain unchanged.
5

The statistical analysis was performed in R software, version 3.5.1
(R Core Team, 2018), and “mgcv” package (version 1.8–18.) was used
(Wood, 2017). The above statistical tests were two-tailed, and associa-
tions with p-Value < 0.05 were considered statistically significant.

2.10.4. Attributable fraction
In epidemiological research, an attributable fraction (AF) is a tool to

quantify the proportion of cases that are attributable to risk factors that
helps to prioritize prevention, better planning and evaluation of public
health intervention strategies to reduce or eliminate the exposure to
the most accountable risk factors (Gasparrini and Leone 2014; Bray
and Soerjomataram, 2018).

Gasparrini and Leone (2014) have given a general formula to calcu-
late the attributable fraction AFx for a given exposure x as:

AFx ¼ 1− exp −βxð Þ ð3Þ

The termβx in Eq. (3) is the logarithmof the risk at a certain exposure
level, usually measured as relative risk (RR), relative rate (RR), or odds
ratio (OR). Mainly, βx refers to the association with an exposure level x
in comparison to a reference value x0 (βx = (x-x0)*OR). In the specific
case of climate variables where it is hard to define a condition for null ex-
posure, a reasonable selection of points for variables that correspond to
minimum risk was suggested that was derived from the exposure-
response curve (Fig. 6) (Honda et al., 2014). This value of minimum risk
is defined as the optimum value (OV) and is used as the reference point
“x0” to compute attributable risk measures “βx” and attributable fraction
“AFx”. These are computed for each month of the series for each climate
variable, and the AFx contributed by each respective month are obtained
by separating the associations with “x-x0” higher or lower than “x0” to
obtain average “AFx”, shown in percentage (%). Risks (OR) associated
with multiple exposures are obtained from multivariate regression
models adjusting for potential confounders as shown in Eq. (1). In the
next step the adjusted attributable fraction (AFx) due to risk associated
with multiple exposures x1,…,xp are defined as:

AFx1, . . . , xp ¼ 1− exp −∑
p

i¼1
βxi

� �
ð4Þ

where p stands for number of exposures. In general AFx1,...,xp ≤ AFx1+
…+AFxp, whichmeans the sum of all AFx due to individual exposures
is generally higher than the sum of all AFx combined (Gasparrini and
Leone, 2014).

3. Result

3.1. Socio-demographic and SES profile of the study subjects

Table 1 shows the summary of demographic, SES, and anthropometric
characteristics of the study population at baseline measurement. From a
3 year follow-up (2017–2019) of 461 children from 249 households
considering the loss in follow-ups (527 children and 288 households at
initial) and death of two children, the total number of observations
from the sample was 16,646. Of all recruited children, 51% were females,
and a large proportion of the selected sample fall in the 5–16 years of age.
In about 50% of the households, the parents of the recruited childrenwere
middle school passed. In about 46% of the sample household, either of the
parents were an unskilled worker and about 33.7% were semi-skilled
workers. In about 55.42% of households, family income was in the range
of Rs. 2165–6430 per month. In all, around 73% of the population falls
under the lower socioeconomic (SES) category. There was also a large
percentage of children with high street food eating practices, and fewer
had regular hand washing practices before the meal and after defecation
making themmore vulnerable to infections.



Table 1
Summary of demographic, SES, and water, sanitation, and hygiene characteristics of the study population at baseline measurement.

Study characteristics N (%) Diseases N (%)

Observation 16,646 Total GIT cases 2229 (35.6)
Children (initial) 527 Diarrhea cases (GIT) 2151 (34.38)
Children (final) 461 Diarrhea-episode/child/year (0–5 year of age) 1.7
Households (initial) 288
Households (final) 249
No. of zones 5 Diarrhea-episode/child/year (above 5 year of age) 1.5
No. of sub-zones 10
No. of wards 26
Sex Total URTI cases 2666 (42.6)
Female 233 (51) Common cold and flu cases (URTI) 2375 (38)
Male 228 (49)

Breastfeeding Common cold and flu-episode/child/year (0–5 year of age) 1.7
Currently Breastfeeding 439 (2.6)
Not currently breastfeeding 16,207 (97.4)

Occupation Common cold and flu-episode/child/year (above 5 year of age) 1.7
Unemployed 9 (3.61)
Unskilled Worker 115 (46.18)
Semi-Skilled Worker 84 (33.73) Total LRTI/pneumonia cases 284 (4.5)
Skilled Worker 18 (7.23) Pneumonia-episode/child/year (0–5 year of age) 0.4
Clerical, Shop Owner, Farmer 8 (3.21)
Semi Professional 3 (1.20) Pneumonia-episode/child/year (above 5 year of age) 0.1
Professional 12 (4.82)

SES class
Lower Class 182 (73.09) Total VBD cases 84 (1.3)
Middle class 57 (22.89) Malaria 38 (0.6)
Upper Class 10 (4.02) Malaria episode/child/year (0–5 year of age) 0.0

Education
Illiterate 68 (27.3) Malaria-episode/child/year (above 5 year of age) 0.0
Primary school 32 (12.9)
Middle school 31 (12.5) Dengue 46 (0.7)
High school 57 (22.9) Dengue-episode/child/year (0–5 year of age) 0.0
Intermediate 27 (10.8)
Graduate or postgraduate 21 (8.4) Dengue-episode/child/year (above 5 year of age) 0.0
Professional 13 (5.2)

Family income Skin disease cases 292 (4.7)
≤2164 8 (3.21) Skin disease-episode/child/year (0–5 year of age) 0.3
2165-6430 138 (55.42)
6431-10,718 47 (18.88)
10,719–16,077 24 (9.64) Skin disease-episode/child/year (above 5 year of age) 0.2
16,078–21,437 13 (5.22)
21,438–42,875 7 (2.81)
≥42,876 12 (4.82) Others cases 701 (11.2)

Water source Days of weather data 1095
Well 2 (0.80) Age
Hand pump 41 (16.47) 0–≤2 years 80 (17.3)
Tube well/bore-well/summer sable 45 (18.07) >2–≤5 years 82 (17.8)

>5–≤16 years 299 (64.9)
Municipal water supply 161 (64.66) Street food

Mosquito intervention Irregular 189 (41)
Yes 128 (51.41) Regular 223 (48.4)
No 121 (48.59) Not applicable 49 (10.6)

Vaccine Hand washing
Yes 416 (90.2) Irregular 254 (55. 1)
No 45 (9.8) Regular 158 (34.3)

House type Not applicable 49 (10.6)
Temporary House 39 (15.66) Cleaning
Semi Pacca (Cemented) 203 (81.53) Satisfactory 149 (59.84)
Pacca (Well Furnished) 7 (2.81) Unsatisfactory 100 (40.16)

Open container Defecation
Yes 241 (96.79) Open field/community toilet 30 (12)
No 8 (3.21)

Water filter House toilet 219 (88)
Yes 74 (29.72) Health insurance
No 175 (70.28) Yes 19 (4.1)

No 442 (95.9)
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3.2. Anthropometric analysis and BMI distribution by age and gender

The result from the anthropometric analysis indicates that for chil-
dren under 5 years of age, Z-score distributions show that around
39.6% of children suffer from “stunting” that becomes more prominent
in the age group of 1 to 3 years (Table 2 & Fig. 2a). Compared to
6

males, females account for more observations falling under various cat-
egories of nutritional deficiencies (Fig. 2a). Around, 5.3% of children fall
into “Severe wasting”, 18.9% into “wasting”, 3.8% in “overweight” and
37.3% in the underweight, and 45.7% in the healthy weight category.
Further, the Z score distribution for “Height to age”, weight to “age”,
“weight for length or height” and “BMI” for age show a negatively



Table 2
Most common anthropometric indicators to assess child nutrition status for children aged
0–5 years of age.

Indicators Definitions Observations (%)

Stunting Height-for-age < -2SD 105 (39.6)
Severe wasting Weight for height < -3SD 14 (5.3)
Wasting Weight for height < -2SD 50 (18.9)
Underweight Weight-for-age < -2SD 99 (37.3)
Overweight Weight for height > +2SD 10 (3.8)

Note: SD represent Standard Deviation.

Fig. 2. Nutritional status by stratification variable for age (a) 0–5 Years, (b) 2–16 Years.

Fig. 3. Z-score distributions by
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skewed distribution of both the sexes in comparison toWHO standards
(Fig. 3). The “BMI for age” calculated for children between 2 and
16 years of age using percentile cut-offs (CDC chart) shows that there
lies a good proportion of children that fall under the “underweight”
category (36%) and a greater portion is accounted by males (Fig. 2b).
However, the proportion of children falling under the category of
overweight and obese was low. The year-wise distribution of the
proportion of children (2–16) falling under each category categorized
by sex is presented in Fig. 2b.

3.3. Disease prevalence and cases

Table 1 shows the summary of cases belonging to different disease
categories and Fig. 4 shows the overall, annual, and seasonal distribu-
tion of cases and prevalence for each disease category. The highest num-
ber of cases belong to URTI (38.9%) and GIT (32.5%) disease categories
broadly in which common cold and flu (URTI; 37.96%) and diarrhea
(GIT; 34.38%) contributed to maximum cases. Table 1 also shows the
number of episodes/child/year for each infectious disease category
that was higher in children in the age group 0–5 years. The seasonal
analysis showed a higher prevalence for GIT cases during pre-
monsoon and URTI during winter and post-monsoon. For other disease
categories, the prevalence remained less than 10%. However, based on
the number of cases, the cases for URTI were higher in winter andmon-
soon. The prevalence and cases for diarrhea, and common cold and flu
followed a similar pattern of seasonal distribution as shown by GIT
and URTI cases respectively. Skin diseases showed high cases during
monsoon but high prevalence during post-monsoon. Pneumonia
(LRTI) shows a slightly higher number of cases and prevalence in pre-
monsoon. Malaria and dengue (VBD) show high cases and prevalence
in the post-monsoon season. No significant difference in cases was
noted from one year to another may be due to only 3-year follow-up.

3.4. Association between disease outcomes and climatic factors

The results from generalized additivemixed effectmodeling showed
that the increase in cases of diarrheawas associatedwith Tmax,WS, and
RF (Fig. 5). With every unit rise in Tmax and WS, diarrhea cases in-
creased by 3.97% (95%CI: 2.92, 5.02%) and 14.16% (95%CI: 6.52,
21.80%) respectively. On the other hand, RF was marginally associated
with an increase in diarrhea cases by only 0.12%(95% CI:-0.17,-0.08%).
The cases of diarrhea decreased in females, with an increase in age
and better SES, and with frequent hand washing practices and changes
sex for 0–5 years of age.



Fig. 4. No of cases and prevalence of different disease categories at total, annual and seasonal basis.
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in drinking water source from piped municipal water to underground
water. The common cold and flu cases showed a very distinct impact
of climatic factors that was eventually less confounded by other SES
conditions (Fig. 5). Common cold and flu showed a negative association
with Tmax (3.87%; 95% CI: 2.97, 4.76) and positive with RH (0.73%; 95%
CI: 0.38, 1.08) that decreased with increase in age. Pneumonia showed
association onlywith AH, each unit decrease in AH observed an increase
of 3.02% (95% CI: 0.75, 5.30) in pneumonia cases. The present study sug-
gests that AH and WS are better predictors for modeling VBD than the
other unique weather variables (Fig. 5). The per-unit increase in AH
and decrease in WS were associated with an increase of 7.19% (95% CI:
1.51, 12.87) and 17.40% (95% CI: 12.32, 22.48) in malaria and dengue
cases respectively. The malaria cases was found to be higher in aged
children whereas dengue was associated with children having under-
ground drinking water source. The cases of skin disease in children
were significantly associated with Tmax and RF. For each unit increase
in Tmax and RF, an increase of 3.94% (95% CI: 1.67, 6.22) and 0.18%
(95% CI: 0.1, 0.27) in skin disease cases was observed. (Fig. 5). The sus-
ceptibility to skin disease decreases with an increase in age.

The AFx due to each climate variable for each infectious disease and
the concurrent AFx due to combined risk of all-climate variables for
each infectious disease is shown in Table. 3. Our findings showed that
non-optimum temperature accounted for an AFx of 10.79% in common
cold and flu cases, 7.46% in diarrhea cases, and 6.51% in skin diseases in
Varanasi, India (Table 3). Humidity accounts for a 9.11% fraction in
pneumonia (AH) while 5.43% in common cold and flu (RH). Rainfall
on the other hand contributes to 11.47% in skin disease and 4.09% in di-
arrhea cases. WS accounts for 3.94% of diarrhea cases. The combined
contribution of climate to the disease proportion remains within
14–18% for diarrhea, common cold and flu, and Skin diseases and 9%
for pneumonia. However, the combined AFx due to all risk factors
remained less than the individual AFx associated with each risk factor.

3.5. Exposure response curve

The exposure-response curves with a 95% CI for individual disease
categories (with a dashed line marking the OV attributed to minimum
prevalence) and climate parameters are included in Fig. 6. All disease
categories displayed variation in the prevalence with variation in levels
of exposure to climate parameters. The common cold and flu (URTI)
showed an increase in cases with a decrease in monthly Tmax below
37 °C and with an increase in RH above 65%. Diarrhea (GIT) cases
showed an increase with monthly Tmax above 30 °C and monthly WS
above 1.5 kmph and with monthly RF below 60 mm. Skin diseases
8

show a linear increase with monthly Tmax and RF above 33 °C and
40 mm respectively. Pneumonia (LRTI) showed association only with
AH, with a decrease in AH below 200 g/m3, pneumonia cases increased
linearly.

4. Discussion

In the present cohort of children ≤16 years of age in different wards
of Varanasi over 3 years (Jan 2017 to December 2019), the cases of diar-
rhea/GIT and common cold and flu/URTI outnumbered other disease-
related morbidities. The finding was consistent with other studies that
reported a high incidence rate (IR)/prevalence for respiratory tract dis-
eases, and GIT (Mohapatra et al., 1989; Awasthi and Pande, 1997)
followed by skin diseases and pneumonia with seasonal dominance of
GIT and skin diseases in pre-monsoon (March–June) and monsoon
(July to September), respectively (Awasthi and Pande, 1997). This sug-
gests the need for season-specific health care strengthening to combat
specific morbidities associated with children. Importantly, the epi-
sodes/child/year remains high in under 5 children though it has de-
clined in the recent past (Sutariya et al., 2011).

Another important result from the present study shows a high per-
centage of children falling under poor nutritional categories. The girl
child contributes to significant numbers falling under the stunting and
undernutrition category in comparison to the world standards (based
on WHO criteria). The finding is backed by similar observations over
Haryana, India for children under 6–12 years of age that show about
22.5% of the recruited children felled under the thin/severe thin category.
Similarly Awasthi and Pande (1997), found that among children of 1.5 to
3.5 years, about 67.6% (n = 717) were underweight, 62.8% (n = 666)
stunted and26.5% (n=281)werewasted. A similarfindingwas reported
by Damor et al., 2013. The evidence highlights the need for increased nu-
tritional demand for the children over Varanasi in general.

The cases of diarrhea (GIT), common cold andflu (URTI), pneumonia
(LRTI), malaria and dengue (VBD), and skin diseases were significantly
associated with climate, and the strength and direction varied with
each disease class. The association between child morbidities and cli-
mate in this population is consistentwith past studies in similar settings
(Awasthi and Pande, 1997). Studies by Xu et al. (2012) and Phung et al.
(2017) have also identified the positive relationship between ambient
temperature and paediatric gastrointestinal infections. The higher tem-
perature in association with humidity and rainfall increases bacterial
causes of infectious diarrhea/GIT and survival times of bacteria
(Ghazani et al., 2018). In drought periods (pre-monsoon), an increase
in temperature may cause a rise in the evaporation rate from turbid



Fig. 5. Percent change in cases associated with different disease categories with 1 unit increase in climate parameters and with change in SES and anthropometric classes. All values are
significant at p < 0.05.
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and polluted water bodies that in turn may increase the concentration
of fecal pathogens in the water bodies and subsequent consumption of
the polluted water causes diarrhea/GIT infections in children (Jofre
et al., 2009; Phung et al., 2017). WS, on the other hand, may help in
themixing of the water bodies and thus in the distribution or transport
of themicroorganisms (Hervás et al., 2014). However, few studies have
reported no significant association of diarrhea infection to RH, or rain-
fall, or WS (Lama et al., 2004; Prasetyo et al., 2015). RF on the other
hand show only marginal association with an increase in diarrhea
cases. In conditions of heavy rainfall (monsoon), surface water flush
feces that mix with municipal water sources and contaminate the
same (Bunyavanich et al., 2003) thus causing increased diarrhea cases
9

on the consumption of infectedwater or food. Improved SES conditions,
better hygiene practices like frequent hand washing practices before a
meal and after defecation, and protected water sources caused fewer
children to fall sick due to diarrhea. Our results on climate-diarrhea
(GIT) association are similar to those reported from Tamil Nadu, India
(Mertens et al., 2019), Bangladesh (Hashizume et al., 2008), New York
(Lin et al., 2016), and other tropical regions (Lama et al., 2004).

The association between climate parameters with common cold and
flu (URTI) cases in the present study are similar to those reported from
TheNetherlands and Toronto, Ontario, Canada that shows a negative as-
sociation of temperature with Influenza cases (URTI) (Caini et al., 2018;
Peci et al., 2019). Inhibited response of the immune system in winter



Table 3
Total attributable fraction (%) due to climate risk factors to disease proportion for each infectious diseases.

Infectious Disease Climate Risk factors Direction of association OR (LCL, UCL) AFx (%) (LCL, UCL) Concurrent AFx (%)

Common cold and flu (URTI) Tmax (°C) <OV 0.96 (0.95, 0.97) 10.79 (8.44, 13.05) 15.88
RH (%) >OV 1.007 (1.004, 1.011) 5.43 (2.85, 7.93)

Diarrhea (GIT) Tmax (°C) >OV 1.04 (1.03, 1.05) 7.46 (5.55, 9.32) 14.66
WS (Kmph) >OV 1.15 (1.07, 1.24) 3.94 (1.84, 5.99)
RF (mm) <OV 0.98 (0.97, 0.99) 4.09 (2.07, 6.07)

Pneumonia (LRTI) AH (g/m3) <OV 0.997 (0.995, 0.999) 9.11 (2.33, 15.36) 9.11
Skin Disease Tmax (°C) >OV 1.04 (1.02, 1.06) 6.51 (2.84, 9.96) 17.79

RF (mm) >OV 1.002 (1.001, 1.003) 11.47 (6.27, 16.18)

Note: The AFx is calculated for variables above or below optimum value (OV). The less than sign (<) shows that the values less than OVwere taken while greater than sign (>OV) shows
that values greater than OV were taken into consideration.
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due to the decreased levels of vitamin D production (Roussel et al.,
2016) and decreased clearance ability of respiratory cilia on inhalation
of cold air (Hajat et al., 2004) are the plausible reasons. Indoor crowding
and close contact in winters may also facilitate virus transmission
(Hirve et al., 2015). Besides temperature, high humidity during
monsoon season in tropical/sub-tropical populations aids virus survival
and transmission, thus low temperature and high RH (70–80%) is the
driving factor for peaked Influenza activity in temperate, subtropical,
and tropical regions (Tamerius et al., 2013). Importantly, the
Fig. 6. Exposure-response curves between individual morbidity for each disease categories and
Note. The blue areas are the 95% CIs.
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temperature shows a stronger effect compared to RH. In a nonlinear
exposure-response relation, Tamerius et al. (2013) reported peaked in-
fluenza activity in winter as monthly average specific humidity or tem-
perature decrease below 11–12 g/kg and 18–21°. Though, the evidence
frommost high latitude regions suggests that low temperature and low
humidity (winter) increase influenza activity through increased respi-
ratory virus survival and subsequent transmission (Peci et al., 2019).
But because subtropical cities like Varanasi witness large cases of cold
and flu (URTI) both during winter (low temperature but relatively
climate parameters.
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high RH) and monsoon (high RH), therefore the old conventional rela-
tion of low temperature and humidity didn't actualize. The decrease in
common cold and flu (URTI) cases as the age advanced were apparent
may be due to strengthened immune response with age.

We found evidence that lower monthly AH was associated with in-
creased pneumonia (LRTI) cases. A study by Wiemken et al. (2017),
from an International Cohort Study showed a similar negative associa-
tion between hospitalization due to LRTI and AH (RR = 1.01, 95% CI;
0.85, 1.2). The role of low humidity in increasing viral stability and
transmission associated with influenza virus and respiratory syncytial
virus (RSV) responsible for causing LRTI was previously established
(Wiemken et al., 2017). Though the LRTI (Pneumonia) occurs mostly
in the colder months, climatic factors like temperature and rainfall
drive regional differences in LRTI, with higher deaths between June
and August in India's humid subtropical region (including UP and
Bihar). For a humid subtropical climate, pneumonia deaths show a bi-
modal peak in a year (July and Jan) (Farrar et al., 2019). Several other
studies from India have shown an association of LRTI with air tempera-
ture, atmospheric pressure, RF, and RH (Liu et al., 2016). Further,
interhost factors such as changes in viral stability, airflow and respira-
tory droplet size, viral clearance, nutrition changes, ultraviolet light,
and close indoor contact have been described as potential factors to in-
crease the susceptibility (Pica and Bouvier, 2012;Wiemken et al., 2017).

It is important to note that different climatic factors (RF, tempera-
ture, and RH) play a vital role in determining the timing ofmosquito ac-
tivities through their interaction with the seasonal and circadian
regulation of species' behaviors and other ecological constraints
(Bates, 1949; Veronesi et al., 2012). However, in the present study, ma-
laria and dengue (VBD) were found to show association only with AH
and WS respectively. High humidity enhances mosquito activity and
survival time (Lauderdale et al., 2014). Thusmosquito'smore often pre-
fer to feed at night time when the humidity is relatively high. Huang
et al. (2011) showed that humidity (relative) (55 ≤ RH ≤ 80) play an im-
portant role in altering the life cycle of themosquito and biting behavior
that ultimately influence malaria transmission. A positive association
between humidity and malaria cases was also reported from other
parts of the country (Kumar et al., 2020). WS acts as one of the influen-
tial factors that favor mosquito dispersal at low WS but may reduce
mosquito upwind flight activity and capability at higher WS
(Bidlingmayer et al., 1995). The high WS may also affect the feeding
habits and oviposition dynamics of the Aedes mosquito and the overall
dengue transmission as was observed in a study by Santos et al., 2020
that showed higher WS was associated with a decrease in the average
number of eggs of Aedes aegypti (β = −125.2; 95% CI: −198.8 to
−51.6).

Skin disease among children is not considered an important public
health issue at the individual level as the most common skin infections
are not lethal. However, it may put an important health problemwithin
the population. Being the most exposed part, skin diseases are inclined
to be highly sensitive towards the climate. The present study shows that
increased temperature and humidity aids in skin diseases among chil-
dren in Varanasi. Higher temperature and humidity (55% and 78%) dur-
ing the summer and rainy seasons aid the rapid proliferation of
pyogenic bacteria that may lead to an increased rate of bacterial skin in-
fections (Balato et al., 2014). Apart from climate, the other important
factors accounting for the spread of skin diseases include SES status,
malnutrition, overcrowding, and poor standards of hygiene practices
(Mahé et al., 1995; Balato et al., 2014) that all seemed to favor skin dis-
eases for children in Varanasi. Though no significant association could
be established for these parameters. The association further shows de-
creased cases with an increase in age.

We also evaluated the disease burden attributable to non-optimum
values of climate variables. Tmax, humidity (relative and absolute), RF,
and WS were identified as the major climate contributors to disease
classes. Importantly, the sum of the AFx due to individual climate vari-
ables remains less than their combined contributions. This is because
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of the overlapping contributions of the coexisting risk factors that com-
bine to cause an adverse health effect (Gasparrini and Leone, 2014). It
should be noted that the climate variables could only explain part of
the accountability for the occurrence of infectious diseases. Thus, there
might exist someother salient city-specific and individual-specific char-
acteristics that impact the occurrence of these prevalent infectious dis-
eases. Importantly, in this paper, we could not establish a larger role of
SES on all diseases except diarrhea. Therefore, including other informa-
tion such as city-specific attributes, population immunity, community
health literacy, population behavior, vegetation coverage, urbanization,
and public-health interventionmight further explain the possible effect
modification for the climate-disease relationship.

Comparative studies on AFx due to climate variables showed consis-
tent results. Wang et al. (2021) reported the AFx due to high ambient
temperatures (above the 95th percentile of temperature) on category
C notifiable infectious diarrhea overmainland Chinawas 4.5%.Whereas,
Zhao et al. (2019) show AFx of 13.6% in hospital outpatient visits for re-
spiratory illness attributable to ambient temperature exposure for age<
65 years. Thus solely depending upon the conventional methods of
showing the association between climate and disease, incorporation of
AFx, in combination with other relevant information's like RR, OR or
prevalence rate (PR) or percent change (%), will together help in prior-
itizing a given exposure and steps to improve the population health.

5. Strength and limitations

The study has its strengths and weaknesses. The study presents evi-
dence of an association between climate parameters and infectious dis-
eases in children in Varanasi, India. Up to the knowledge of authors, no
such study exists in this region of India that presents such evidence tak-
ing into account extensive parameters for confounding and effect mod-
ification. The health effects have been poorly investigated in this part of
India and any evidence that provides thedisease burden associatedwith
climate parameters will help the policymakers and the government to
avert the risk that may arise due to climate change. The study also pre-
sents the results in the form of attributable fraction due to risk associ-
ated with climate variables accountable to diseases proportion in
children. The present study provides evidence about the optimum
values for each climate variable for each disease category that have
rarely been investigated over India. The study further presents the nu-
tritional status of children based on various indexes proposed by
WHO. That shows a substantial number of children fall under the under-
nourished condition as visible through their proportion in wasting,
stunting, and underweight conditions. Nevertheless, this identified as-
sociation may contribute to early preparedness and prevention of noti-
fied infectious diseases.

The weakness of the study lies in the fact that it didn't take into ac-
count the non-independence of observations for children from the
same household that can have a bias associated with the results. The re-
ported cases for infectious diseases were not confirmed for identifica-
tion of causal pathogens in a laboratory and thus are subject to
reporting bias. Further, the meteorological parameters collected from
the IMD weather station at Banaras Hindu University was assumed to
apply to allwards becauseVaranasi has a singleweather station. This as-
sumption could be more reasonable for parameters like temperature
that are more homogeneous than for rainfall, which can be more het-
erogeneous at provincial scales. Thus, the uncertainty in the true expo-
sure to weather at the individual level is a limitation of this study, and
misclassification aroused due to lack of true exposure may have led to
bias and reduced precision. Another important assumption made in
the study was that the regression model was adjusted for all potential
confounders. Remarkably, due to epidemiological data constraints, all
statistical analyses were conducted using monthly aggregated data.
Though evidence-based on long time scales may limit statistical or pre-
dictive power in establishing the influences that appear over daily or
weekly periods, in absence of large scale evidence over the subject
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from the socioeconomically backward areas, the present evidence
could prove important to highlight the present association of infec-
tious diseases with climate and anticipated future risks under the cli-
mate change scenario in children with already very high under 5
mortality.

6. Conclusion

The key message derived from the present study that was carried
out on a representative sample of children under 16 years of age in Va-
ranasi city highlights that in spite of several important measures taken
to reduce child morbidity and mortality pertaining to infectious dis-
eases, the burden still remains high among children, prominent in
under 5 age group and is significantly associated with climatic parame-
ters. The association between infectious diseases and climatic parame-
ters was modified and confounded by socioeconomic and child
anthropometric factors. It is important to note that climate variables
contributed only a small fraction of the disease proportion. Thus, there
might exist someother important city and individual-specific character-
istics that may account for further effect modification and confounding
effect. The study further highlights the poor socioeconomic conditions
of the families of the children that is evident through a large section of
children falling under the undernourished condition (stunting, wasting,
and underweight). On a broader trajectory, the findings for the study
may spark interest in testing the association link between climatic pa-
rameters and infectious disease across a wide range of infectious dis-
eases particularly in the predominating respiratory and enteric disease
with apparent seasonality. Because, enhanced learning of the existing
interaction between environmental, social, and demographic drivers
and the marked seasonality in infectious disease may play an unprece-
dented role in the refinement of the disease transmission models and
augmenting interventions.

Based on the results of the study, countries like India, that seek locally
constructed disease burden estimates to advocate efforts and actions at
the local/regional/and national level will be benefitted. The study may
provide diverse opportunities for government, policymakers, and re-
searchers to interpret the results basedon their prime concerns. However,
the major emphasis of the study was to provide an evidence-based esti-
mate to the government and policymakers to highlight the present bur-
den of morbidities among pediatrics, some of which need immediate
attention to take preventive actions to combat the additional burden of
climate change.
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