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Abstract
Accurate estimation of evapotranspiration is generally constrained due to lack of required hydrometeorological datasets. This
study addresses the performance analysis of reference evapotranspiration (ETo) estimated fromNASA/POWER, National Center
for Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling through the Weather
Research and Forecasting (WRF) model. The state-of-the-art Hamon’s and Penman-Monteith’s methods were utilized for the
ETo estimation in the Northern India. The performance indices such as bias, root mean square error (RMSE), and correlation (r)
were calculated, which showed the values 0.242, 0.422, and 0.959 for NCEP data (without downscaling) and 0.230, 0.402, and
0.969 for the downscaled data respectively. The results indicated that after WRF downscaling, there was some marginal im-
provement found in the ETo as compared to the without downscaling datasets. However, a better performance was found in the
case of NASA/POWER datasets with bias, RMSE, and correlation values of 0.154, 0.348, and 0.960 respectively. In overall, the
results indicated that the NASA/POWER andWRF downscaled data can be used for ETo estimation, especially in the ungauged
areas. However, NASA/POWER is recommended as the ETo calculations are less computationally expensive and easily
available than performing WRF simulations.

1 Introduction

Evapotranspiration defined as the “combined loss of water
from a given area, and during a specified period of time by
evaporation from the soil surface and by transpiration from
plants” (Thornthwaite 1948). It is considered as one of the
most important components of the hydrological cycle (Mall
and Gupta 2002; Srivastava et al. 2016). On the Earth surface,

it has very important role in the context of water and energy
balances as well as required in the irrigation and agriculture
practices (Nag et al. 2014). In addition, evapotranspiration is
required in many scientific disciplines to understand the un-
derlying hydrological processes (Petropoulos et al. 2015;
Petropoulos et al. 2016). However, in spite of the several ef-
forts made by many government agencies, there are still lack
of sufficient meteorological stations for measurement of reli-
able and accurate datasets for evapotranspiration (ETo)
estimation.

Previously, indirect approaches are generally used for ETo
measurements (Srivastava et al. 2017). One means of estimat-
ing ETo is through the use of a lysimeter, which determines the
evapotranspiration by recording the amount of precipitation an
area receives and the amount lost through the soil. However,
due to high maintenance cost, time consumption, and lack of
precise instrumentation, its implementation is not easy, espe-
cially for larger areas (Pandey et al. 2016). Nevertheless, there
are a number of other methods developed in the past decades,
which quantify ETo (Alkaeed et al. 2006; Djaman et al. 2015;
Lang et al. 2017). Among them, the simplest approach was
developed by Hamon (1960), which requires only temperature
data for ETo calculation. In (2015), McCabe et al. used the
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monthly calibrated coefficient values to calculate the ETo and
found that the mean monthly ETo (using Hamon’s method)
were close to the mean monthly free-water surface
evaporation.

From many studies, the FAO-56 Penman-Monteith
(PM) method is considered to be the most suitable in-
direct method for estimation of reference evapotranspi-
ration (ETo). Cai et al. in 2007 used the daily real-time
ETo in the field of water resources management. Kar
et al. in 2016 compared the ETo, computed by eight
different methods for the dry sub-humid agro-ecological
region. They found that the estimated ETo calculated
via the Penman-Monteith method provide a better esti-
mate of ETo as compared to all the other methods.
However, a major drawback of the PM method is that
it demands several meteorological parameters (wind
speed, humidity, sunshine hour, etc.), which may not
be often available everywhere (Chen et al. 2005), could
be due to the lack of availability of stations or missing
values due to station poor maintenance (Pandey et al.
2016).

There were very few studies focused on the ETo estimation
using the mesoscale model like MM5 (Mesoscale modelling
system 5), Weather Research and Forecasting model com-
bined with NASA/POWER datasets, etc. Some studies report-
ed on the use of mesoscale models for estimation of ETo in
different parts of the world (Falk et al. 2014; Lin et al. 2018;
Srivastava et al. 2013, 2016). Ishak et al. (2010) have estimat-
ed the ETo over Brue catchment, southwestern England using
the ECMWF ERA-40 reanalysis downscaled data through
MM5model. Silva et al. (2010) have investigated the potential
use of numerical weather forecast obtained from MM5, as a
proxy for surface meteorological data with specific objective
to use it in the estimation of ETo overMaipo river basin. Later,
Srivastava et al. (2013, 2016) used the WRF model to down-
scale the ECMWF and NCEP reanalyzed datasets over the
Brue catchment and reported a better performance of
ECMWF than NCEP downscaled datasets.

Despite the high importance of ETo in the field of hy-
drology and climatological studies, there are only a few
studies available in the technical literature domain, which
demonstrate the accuracy and performance of the ETo de-
rived from the WRF model and NASA/POWER datasets,
especially for the Indian regions. Therefore, this paper pro-
vides a detailed cross comparison of ETo estimated from
different existing datasets—NCEP, WRF downscaled
NCEP, and NASA/POWER over cropland by using
Hamon’s and Penman-Monteith’s methods in the Northern
India. Further detailed analysis with respect to seasonality is
also provided to determine the appropriateness of these
methods of deriving ETo with regard to seasonal variability.
The outcomes of the study can be used by the agricultural,

meteorological, and hydrological departments to improve
their forecast ability.

2 Materials and methodology

2.1 Study area

The study area consists of agricultural landscape, geograph-
ically lies between 25° 14′ 54.94″ N to 25° 17′ 06.57″ N and
82° 58′ 30″ E to 83° 00′ 35″ E in the Northern India, con-
sidered as food bowl of the country. Topographically, it is
located on higher ground with mean elevation of 80.71 m
(Cai et al. 2009). Being situated in the Indo-Gangetic plain,
the land is composed of very fertile alluvial soil deposited
by Rivers Ganga and Varuna. Climatically, the area is sub-
humid type, characterized by hot summer, cold season, and
pleasant monsoon. The temperature varies from 22 to 46 °C
in summer and may drop below 5 °C in winter season. June
is the hottest month with the mean temperature around
35 °C and mid-December to January is the coldest month
(< 5 °C). The mean annual rainfall is 1036 mm, whereas
about 90% of the total rainfall takes place in monsoon sea-
son from June to September. Geologically, the study area is
characterized by Gangetic alluvium formed by the deposi-
tion sediment by river Ganga and its tributaries. The obser-
vational temperature dataset (2009–2016) is used for the
estimation of ETo provided by the Department of
Agriculture, Banaras Hindu University, India. In addition,
three sets of reanalyzed data sets—NCEP, WRF downscaled
NCEP (hereafter WRF-NCEP), and NASA-POWER—were
collected and used for the estimation of ETo for the time
period 2009–2016 and compared with the observed ETo. An
overview of the methodology used in the present study is
shown in Fig. 1.

2.2 Weather research and forecasting model

The WRF model was developed by scientists at the National
Center for Atmospheric Research (NCAR), National Centers
for Environmental Prediction (NCEP), the National Oceanic
and Atmospheric Administration (NOAA), the Naval
Research Laboratory, the Earth System Research Laboratory,
the University of Oklahoma, the U.S. Air Force, and the
Federal Aviation Administration (FAA). The Weather
Research Forecasting (WRF) is a next-generation, non-hydro-
static, and mesoscale modeling system. This numerical weath-
er prediction model and data assimilation system are used in
atmospheric research and operational application (Skamarock
et al. 2001). WRFI is useful for various applications such as
assimilation of meteorological datasets, air quality modeling,
and downscaling climate simulations as well as the atmosphere
research (Mohan and Sati 2016). It comprises of ARW
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(Advance Research WRF) and NMM (Non-Hydrostatic
Mesoscale model) cores (Schwartz et al. 2009; Srivastava
et al. 2016). In this study, WRF is used to downscale the
NCEP data over the selected region in Northern India.
Meteorological data downscaled from the WRF model was
used for calculation of ETo. Derived ETo is compared with
the observed dataset obtained from the station. For microphys-
ics, we used WSM 6 - class graupel scheme inbuilt with ice,
snow, and graupel processes. The graupel scheme is highly

suitable for high-resolution simulations and developed at the
National Center for Atmospheric Research (NCAR) (Hong
and Lim 2006). The long-wave radiation RRTM (Rapid
Radiative Transfer Model) scheme is used because of its high
efficiency (Mlawer et al. 1997). The Dudhia scheme is used as
it is efficient for cloud and clear-sky absorption and scattering
(Dudhia 1988). In surface layer option, Monin-Obukhov sim-
ilarity scheme is used. YSU scheme is selected to constitute
near surface weather operations (Kim and Wang 2011).

Fig. 1 Flowchart of the methodology
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2.3 NASA/POWER and NCEP datasets

In this study, the hydrometeorological variables were estimat-
ed using the NCEP data directly, after downscaling of NCEP
using WRF (WRF-NCEP) and NASA/POWER as well as
from ground-based station. The Worldwide Energy
Resources (NASA/POWER) project was initiated in 2003,
which is an upgrade to the surface meteorology and solar
energy (SSE) project. The NASA/POWER Release-8 pro-
vides the meteorological data on a global grid scale with spa-
tial resolution of 0.5° × 0.5°. The NASA/POWER data was
developed by using the satellite, ground observation,
windsondes, modeling, and data assimilation techniques.
The meteorological data sets are taken from NASA Modern
Era Retro-Analysis for Research and Applications (MERRA-
2) assimilation model and from Goddard Earth Observing
System Model, version 5.12.4 (GEOS) assimilation model.
GEOS is a system of models integrated using the Earth
System Modeling Framework (ESMF) being developed in
the GMAO (Global Modeling and Assimilation Office) to
support NASA’s earth science research in data analysis, cli-
mate and weather prediction, and basic research. In this study,
the meteorological variables were downloaded from the
NASA/POWER website (https://power.larc.nasa.gov/) for
the time span of 2009–2016. In addition, the global NCEP
FNL (Final) reanalysis dataset from 2009 to 2016 was used
for the estimation of ETo. The NCEP-NCAR global reanalysis
data set is an assimilated dataset developed using a state of art
analysis forecast system (Kalnay et al. 1996). The NCEP
datasets with 1° × 1° grids are available at every 6 h and can
be downloaded from the website (http://rda.ucar.edu/). The
NCEP data is available from 1948 to present and updated
continuously.

2.4 Evapotranspiration estimation

2.4.1 Hamon’s method

In this study, potential evapotranspiration (PET) is calculated
using Hamon’s equation. Hamon equation uses only the tem-
perature and is a simple and robust method for calculating
evapotranspiration (McCabe et al. 2015). PET is calculated
using downscaled and non-downscaled NCEP reanalysis data
and compared with the observed ETo. As the area under con-
sideration is cropland and there is adequate availability of wa-
ter, the ETo values can be considered closer to the PET values.

Hamon equation can be expressed as follows:

PET ¼ K*0:165*216:7*N*
es

T þ 273:3

� �
ð1Þ

where PET is in mm day−1, K is the proportionality coeffi-
cient, N is the daytime length (x/12 h), es is the saturation

vapor pressure (hPa), and T is the average monthly tempera-
ture.

es ¼ 6:108e
17:27T

T þ 273:3

� �
ð2Þ

2.4.2 Penman-Monteith method

The Food and Agricultural Organization-56 (FAO) Penman-
Monteith method was considered to estimate daily ETo
(Monteith 1965; Penman 1956). The FAO-56 PM method is
recommended as the best method for ETo estimation for all
types of climates (Allen et al. 1998) and the equation for
estimation of daily ETo can be expressed as

ETo ¼
0:408Δ Rn−Gð Þ þ γ

900

T þ 273
u2 es−eað Þ

Δþ γ 1þ 0:34u2ð Þ ð3Þ

where ETo rate is in mm day−1, Rn is the net radiation at the
crop surface (MJ m−2 day−1), T is the mean air temperature
(°C), u2 is the wind speed (m s−1) at 2 m above the ground, es
is the saturation vapor pressure (kPa), ea is the actual vapor
pressure, es-ea is the saturation vapor pressure deficit (kPa),Δ
is the slope vapor pressure curve (kPa °C−1), γ is the psychro-
metric constant (kPa °C−1), and G is the soil heat flux density
(MJ m−2 day−1).

Δ ¼
4098 0:6108 exp

17:27T
T þ 237:3

� �� �

T þ 237:3ð Þ2 ð4Þ

where T is the air temperature and e = 2.7183 (base of natural
logarithm).

For the calculation of Rn (net radiation), Ra (extraterrestrial
radiation) value is required. Ra can be calculated using the
following equation:

Ra ¼ 24 60ð Þ
π

Gscdr ωssinϕsinδð Þ þ cosϕcosδsinωsð Þ½ � ð5Þ

where Ra is the extraterrestrial radiation (MJ m−2 day−1), Gsc

solar constant = 0.0820 MJ m−2 min−1, dr inverse relative dis-
tance Earth-Sun, ws sunset hour angle [radian], j = latitude
[radian], d = solar decimation [radian] (Zotarelli et al. 2010).

2.5 Angstrom-Prescott model

Since solar radiation is not available for the study area, to
avoid this difficulty, the FAO56 suggested Angstrom-
Prescott (AP) equation, which is a simple straightforward
method to predict the daily global solar radiation and therefore
considered here to calculate the monthly daily extraterrestrial
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radiation (Podder et al. 2014). The equation is given as fol-
lows:

H0 ¼ 24

π
Gsc 1þ 360n

365

� �
� cosϕcosδsinωs þ πωs

180∘
sinϕsinδ

� �
ð6Þ

where H0 is the solar radiation, Gsc is the solar constant
(1.361 kW/m2), n is the daily maximum sunshine duration
in hour, ϕ is the latitude in degree, δ is the solar declination
in degree, and ωs is the sunset hour angle in degree.

3 Results and discussion

3.1 Evaluation of hydrometeorological variables

From NCEP, WRF-NCEP, and NASA/POWER data sets,
weather variables were extracted for ETo estimation.
Temporal variations of temperature are shown in Fig. 2, while
combined (pooled) performance statistics are shown in Fig. 3.
The three statistical indices correlation (r), RMSE, and bias
are calculated between NCEP, WRF-NCEP, and NASA/
POWER estimated temperature and compared with the
ground-based observations. As shown in Fig. 3, we can ob-
serve a gradual increment in the temperature data, when pro-
ceeding from the winter to summer seasons. Among three
datasets, the WRF-NCEP data has the highest correlation
(r = 0.976), followed by NCEP (r = 0.971) and NASA/
POWER (0.969), which indicates a close agreement of tem-
perature with ground observations. However, in terms of
RMSE and bias, the NASA/POWER has shown a better per-
formance followed byWRF-NCEP and NCEP estimated tem-
peratures (Table 1). Some outliers can be seen in Fig. 3; a
detailed investigation revealed that during those days, sporad-
ic rainfall occurs in the area, which is well captured by the
meteorological station but not detected in any of the simulated
products. These scattered or isolated rainfall in the summer
season caused a sudden cooling down of the land surface and

leads to lowering of the temperature during those days. Other
localized factors such as irrigation practices at specific inter-
vals in the area also caused a reduction in the temperature, but
not detected in the global reanalysis products used in this
study. These sharp variations are not properly captured by
NASA/POWER, NCEP, and WRF-NCEP, and thus, an over-
estimation can be seen in Fig. 3. Further, Fig. 4 shows the
performance of estimated temperature on a seasonal basis
and with observed dataset. From Fig. 2, temperature estimated
from different sources showed a close agreement with the
ground-based observations. In winter, in terms of correlation,
the NCEP temperature (0.948) has shown a good performance
as compared to the WRF-NCEP (0.940) and NASA/POWER
(0.934) datasets.

However, in terms of bias and RMSE, the WRF-NCEP
downscaled temperature reveals better results than the other
datasets. As compared to winter, in summer, the estimated
temperature is overestimating most of the time. Interestingly
in summer, the NASA/POWER estimated temperature has the
highest correlation (r = 0.966) followed by WRF-NCEP (r =

Fig. 2 Temporal plot for WRF-
NCEP, NCEP, and NASA/
POWER daily temperature with
observed datasets

Fig. 3 Scatter plot representing the variations among WRF-NCEP,
NCEP, and NASA/POWER temperature with observed datasets
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0.957) and NCEP (0.930). In the WRF-NCEP estimated tem-
perature, a comparatively smaller RMSE and bias was obtain-
ed than the other datasets. During the monsoon periods, a poor
performance was observed in estimated temperature

especially in the WRF-NCEP and NCEP compared to the
observations, while the NASA/POWER showed a better re-
sult. The frequent and abrupt changes in the weather variables
in monsoon season due to rainfall, especially in the Indian

Fig. 4 Scatter plot representing the seasonal variations in temperature estimated from NCEP, WRF-NCEP, NASA/POWER, and observed data

Table 1 Performance statistics of the seasonal and pooled daily temperature

Variables NCEP WRF-NCEP NASA/POWER

r RMSE Bias r RMSE Bias r RMSE Bias

Pooled temperature 0.971 2.233 1.333 0.976 2.134 1.210 0.969 1.914 0.826

Winter temperature 0.948 1.236 0.926 0.940 0.830 0.320 0.934 1.457 1.175

Summer temperature 0.930 3.249 2.829 0.957 2.429 2.010 0.966 2.655 2.402

Monsoon temperature 0.883 2.284 1.572 0.807 2.697 2.290 0.888 1.850 0.605

Post-monsoon temperature 0.962 1.156 − 0.215 0.947 1.449 − 0.430 0.965 1.263 −0.682
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continents, could be one of the reasons for the poor perfor-
mance of estimated temperature in the monsoon season.
Finally, the post-monsoon season reflects a better performance
in terms of both r and bias when compared to the summer and
monsoon periods. Overall, in winter and summer, the WRF-
NCEP has shown the best results followed by NCEP and
NASA/POWER; however, in monsoon and post-monsoon
seasons, NASA/POWER has a much better performance as
compared to the WRF-NCEP and NCEP datasets.

The seasonal analysis of temperature over the study area
is shown in Fig. 5. The box and whisker diagrams are used
to show the overall distribution of the datasets. The main
advantage of the box and whisker plot is that it represents
the distribution of data in terms of maximum, minimum,
median, and both the upper and lower quartile in a single
plot. The line cross across the box represents the median,
while the whisker of the box showed the range of the given
data sets. The winter WRF-NCEP downscaled data shows a
close agreement with the observed temperature, while the
NCEP and NASA/POWER show an overestimation.
During the monsoon season, NASA/POWER has a good
agreement with the observed median temperature. Outside
this period, it is the WRF-NCEP data is in closer agreement
to the observations.

3.2 Comparative assessment of evapotranspiration
products

To understand the performance statistics of NCEP, WRF-
NCEP, and NASA/POWER estimated ETo over the study
area, the relative plot of the pooled dataset with the observed
ETo is shown in Fig. 6. Results indicated that the NCEP and
NASA/POWER data showed an overestimation most of the
time. Higher ETo was observed for April to July months; this
is due to the very high temperature in these months.
According to correlation statistics, the WRF-NCEP has a
marginal high correlation of 0.969 followed by NASA/
POWER and NCEP with r value of 0.960 and 0.959 respec-
tively. On the other hand, a high bias has been observed in the
case of NCEP (0.241) followed by WRF-NCEP (0.230), and
least in the case of NASA/POWER data (0.154). Even in
terms of RMSE, as compared to the NCEP (0.422) and
WRF-NCEP (0.402), the NASA/POWER showed a better
performance with a value of 0.348. Both NCEP and WRF-
NCEP estimated ETo showed an overestimation when com-
pared with the ground data, whereas in case of
NASA/POWER, it is underestimating most of the time.
Overall, the NASA/POWER data showed a small discrepancy
in estimation of ETo (Fig. 7).

Fig. 5 Seasonal distribution of
temperature over the study area
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3.3 Seasonality assessment of ETo

The seasonal distribution of ETo was explained using the
Box-whisker plots as shown in Fig. 8. As it can observed from
the figures, in comparison to the other datasets, the WRF-
NCEP showed a good performance with the observed ETo.
Further, among the four seasons, the post-monsoon season
(October, November, and December) has less variations as
compared to the observed data. In the summer and monsoon
seasons, the ETo is generally overestimating, while in the case
of post-monsoon, it shows an underestimation. In post-mon-
soon, the WRF-NCEP analyzed data showed a good agree-
ment with the observational data. Even though the overall
results are good, the output indicated poor simulation of
higher ETo values throughout the period under consideration,
whereas the simulation of lower ETo values are reasonably
good. In Hamon’s method, as temperature is the prime factor
for the ETo calculation, the differences in the ETo value could
be due to the poor quality of the temperature datasets.

The scatter plot representing the seasonal variations in ETo
derived from NCEP, WRF-NCEP, NASA/POWER, and ob-
served datasets is shown in Fig. 9. The performance statistics
are also calculated for the seasonal ETo and presented in
Table 2. A considerable difference was found between the
NASA/POWER, NCEP, and WRF-NCEP for all the four sea-
sons. For the winter season, the values of r, bias, and RMSE
were reported as 0.945, 0.089, and 0.121 for NCEP respec-
tively, while for WRF-NCEP, the values of r = 0.947, bias =
0.026, and RMSE = 0.070 were obtained. On the other hand,
for NASA/POWER, values of 0.940, 0.112, and 0.139 respec-
tively were obtained for r, bias, and RMSE respectively. The
results in the winter season indicated that the WRF-NCEP is
performing better than the other dataset in this season. In the
summer season r, bias, and RMSEwere found as 0.908, 0.523,
and 0.628 for NCEP respectively, while the WRF-NCEP re-
vealed values of 0.936, 0.373, and 0.480 for r, bias, and RMSE
respectively. Similarly, for NASA/POWER, the values of r =
0.949, bias = 0.439, and RMSE = 0.511 were obtained, which
indicated that the WRF-NCEP can simulate a better ETo than
the NASA/POWER andNCEP datasets. For monsoon season,
r, bias, and RMSE (in the order) were reported as 0.896, 0.311,
and 0.461 for NCEP, 0.902, 0.442, and 0.535 forWRF-NCEP,
and 0.904, 0.136, and 0.373 for NASA/POWER estimated
ETo respectively. Analysis revealed that during the monsoon
season, NASA/POWERwas found much better than the other
datasets for ETo estimation. For post-monsoon season, r, bias,
and RMSE were reported as (in the order) 0.956, − 0.034, and
0.143 for NCEP, 0.949, − 0.063, and 0.167 for WRF-NCEP,
and 0.960, − 0.081, and 0.153 for NASA/POWER data re-
spectively. The results indicated that during post-monsoon
season, there is no improvement after downscaling or by using
the NASA/POWER dataset as NCEP itself is giving better
performance than the other two datasets. This indicate that a
better parametrization scheme or combination of different pa-
rametrization schemes is needed in WRF for simulation of
temperature during post-monsoon season. In the seasonal
analysis, for summer and winter seasons, the WRF-NCEP

Fig. 6 Temporal plots
representing the variations among
NCEP, WRF-NCEP, and NASA/
POWER daily ETo (estimated
using Hamon’s method) with ob-
served data

Fig. 7 Scatter plots of NCEP, WRF-NCEP, and NASA/POWER daily
ETo with observed data
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estimated ETo yields a lower RMSE than the NCEP and
NASA/POWER data and show a very close agreement with
the observed dataset. However, due to better capture of phys-
ics especially by WRF during monsoon season, a more accu-
rate ETo simulation was obtained, as a high performance was
obtained in the pooled dataset. The results indicated that as the
performances of WRF-NCEP and NASA/POWER-based
ETo are very close, any of them can be used for the ETo
estimation. However, as WRF-NCEP requires high-
performance computing facility and based on complex phys-
ics, NASA/POWER could be a better choice for different
applications, as it can be directly obtained from the provider.

3.4 Comparison with the Penman-Monteith estimated
ETo

For calculation of ETo using the Penman-Monteith method,
the dataset of wind speed, solar radiation, relative humidity,
and air temperature were taken into account, obtained from the
ground-based meteorological station. Penman-Monteith
method is now a globally accepted method for calculation of
ETo and can be used here to check the performances of dif-
ferent ETo products. The ETo obtained from Penman-
Monteith method is used as benchmark to evaluate the results
of the WRF-NCEP, NASA/POWER, and NCEP-based ETo
calculated using the Hamon’s method and the results are

shown through the Taylor diagram (Fig. 10). Taylor diagram
is an integrated way of showing the performances in terms of
correlation, deviation, and RMSE using a single diagram. The
circle mask in the x-axis is the reference point, represent the
ETo estimated from Penman-Monteith’s methods, whereas
the position of the different labels reflects the statistical char-
acteristics of the different model data with the observed one.
In the figure, it showed that the NASA/POWER has maxi-
mum agreement with the observed data in terms of correlation,
RMSE, and deviation followed by WRF-NCEP and NCEP.
Therefore, from the overall performance, the NASA/POWER
has shown the skillful results in estimation of ETo over the
study area.

4 Conclusions

Despite the prime importance of evapotranspiration in various
hydrometeorological application, it is not often possible to
assess evapotranspiration from ground-based weather station.
An alternative to this is the use of various reanalysis global
datasets and use of mesoscale model for downscaling the
global reanalysis data for ungauged sites to estimate ETo.
However, there are not many well-documented studies avail-
able in the literature to show the performance of the NCEP
(with WRF downscaling) and NASA/POWER for ETo

Fig. 8 Seasonal distribution of
ETo over the study area
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estimation, especially for the Indian regions. In this study, an
attempt has been made to evaluate the performance of various
global reanalysis datasets and the capability of WRF model in
estimating evapotranspiration over an agricultural field.
Therefore, this paper provides a detailed cross comparison

of ETo estimated from different existing datasets—NCEP,
WRF downscaled NCEP, and NASA/POWER over cropland
by using Hamon’s and Penman-Monteith’s methods. In order
to check the performances of different datasets, the WRF
model was used to downscale the global NCEP data intomuch

Fig. 9 Scatter plots representing seasonal variations in ETo estimated from NCEP, WRF-NCEP, NASA/POWER, and observed data

Table 2 Performance statistics
for the seasonal and pooled daily
ETo

ETo NCEP WRF-NCEP NASA/POWER

r RMSE Bias r RMSE Bias r RMSE Bias

Pooled 0.959 0.422 0.241 0.969 0.402 0.230 0.960 0.348 0.154

Winter 0.945 0.121 0.089 0.947 0.070 0.026 0.940 0.139 0.112

Summer 0.908 0.628 0.523 0.936 0.480 0.373 0.949 0.511 0.439

Monsoon 0.896 0.461 0.311 0.902 0.535 0.442 0.904 0.373 0.136

Post-monsoon 0.956 0.143 − 0.034 0.949 0.167 − 0.063 0.960 0.153 − 0.081
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finer resolution. The accuracy and seasonal performance of
ETo estimated from three globally products NCEP global re-
analysis and WRF downscaled and NASA/POWER were
compared with the ground-based measurements. The temper-
ature variable is used for the estimation of ETo using the
Hamon’s method on both annual and seasonal basis. Based
on the results, the NASA/POWER andWRF-NCEP estimated
ETo using Hamon’s method is giving accurate result and
showed a close match with the ground-based dataset. The
ETo values calculated using the different datasets and
Hamon’s method were compared against the Penman-
Monteith method as well, which also showed a close agree-
ment of the ETo calculated from different global dataset with
the observed one. Overall, the NASA/POWER showed a
close agreement with the observed dataset in terms of bias
and RMSE, which indicates that the NASA/POWER is good
to use for different applications as it needs less calculation in
comparison to WRF that needs sophisticated schemes and
requires high power computing system. The outcomes of the
study could be helpful in assessing the reliability of the NCEP,
WRF downscaled NCEP, and NASA/POWER data for vari-
ous hydrometeorological applications. Further, this study can
improve forecasting application and effectiveness of hydro-
meteorological modeling especially for the ungauged areas.
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