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Abstract: Soil moisture represents a vital component of the ecosystem, sustaining life-supporting
activities at micro and mega scales. It is a highly required parameter that may vary significantly
both spatially and temporally. Due to this fact, its estimation is challenging and often hard to obtain
especially over large, heterogeneous surfaces. This study aimed at comparing the performance of
four widely used interpolation methods in estimating soil moisture using GPS-aided information and
remote sensing. The Distance Weighting (IDW), Spline, Ordinary Kriging models and Kriging with
External Drift (KED) interpolation techniques were employed to estimate soil moisture using 82 soil
moisture field-measured values. Of those measurements, data from 54 soil moisture locations were
used for calibration and the remaining data for validation purposes. The study area selected was
Varanasi City, India covering an area of 1535 km2. The soil moisture distribution results demonstrate
the lowest RMSE (root mean square error, 8.69%) for KED, in comparison to the other approaches.
For KED, the soil organic carbon information was incorporated as a secondary variable. The study
results contribute towards efforts to overcome the issue of scarcity of soil moisture information at
local and regional scales. It also provides an understandable method to generate and produce reliable
spatial continuous datasets of this parameter, demonstrating the added value of geospatial analysis
techniques for this purpose.

Keywords: spatial interpolation; geoinformation; mapping; monitoring soil moisture; soil water
management; geographical information systems

1. Introduction

Soil moisture represents a vital component of the ecosystem sustaining life-supporting activities
at micro and mega scales [1,2]. It is highly variable with spatial and temporal scales and depends
upon the topographical, soil, land cover and climatic conditions [3,4]. Thus, soil moisture is an integral
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part of the hydrological cycle and is essential for human and plant growth [5–7]. Measurement of this
parameter is imperative to agricultural aspects due to its importance for early monitoring of drought
warnings. Land use and land cover influence soil moisture spatiotemporal variability and can alter
soil hydraulic properties because of changes in porosity and structure of the soil [8]. Soil moisture
assessment in the root zone controlling the crop productivity provides information for deficits in soil
moisture [9]. Hence, regular soil moisture monitoring provides appropriate irrigational facility to
improve crop productivity and yield forecasting. Furthermore, soil moisture provides information,
prediction and forecasting on flood before rainstorms. At the saturation level of soil, floods will likely
to occur during the event of rain as its capacity to hold water has reached a limit and thus is unable to
absorb an adequate amount of water [10–12]. Among others, Reference [13] stressed the importance
of soil moisture information for meteorologists, since this parameter is related to weather changes,
thereby providing a more accurate weather forecast. In addition, information on this parameter is
important in biodiversity and ecosystems management [14].

These applications mentioned above show the importance of soil moisture at local, regional and
global scale. Thus, precise, accurate and adequate knowledge on soil moisture at different scales is
essential for agricultural crop productivity, flood monitoring and soil conditions/status. However,
the lack of information on soil data at different scales for large regions is still an issue due to its extreme
variability in both the spatial and temporal domain and at different observation scales. Soil moisture
can be directly measured using wide range ground instruments [15]; yet, such approaches cannot fully
describe the spatial and temporal variability of soil moisture at larger scales. On the other hand, remote
sensing techniques have the advantage of achieving simultaneously satisfactory sampling frequency
and global coverage [7,16,17]. Nonetheless, most of the relevant operational products available today
are providing soil moisture at coarse resolution. To acquire high spatial resolution soil moisture at
regional and local scales, spatial interpolation and GIS can play an important role. Spatial interpolation
and GIS emerged as powerful tools in remote sensing technology demonstrating their capability to
provide spatial continuous data required for environmental monitoring [18].

For estimation of attribute values at unsampled location, spatial interpolation of in-situ
measurements from sampled locations is necessary to achieve continuous spatial data. This necessity
is added when the discrete surface has a different spatial resolution, cell size or orientation as required,
when the continuous surface is represented by a data model other than required and when the available
datasets do not cover the regions of interest completely [19,20]. In these instances, spatial interpolation
methods act as a solution and provide continuous data at the unsampled sites (unknown locations)
by estimating environmental variables from point observations within the same region [20]. Several
spatial interpolation as well as extrapolation methods were developed and applied in different research
disciplines including geo-statistics [21]. There is a variety of such methods which are proposed as more
suitable in each case according to the specific data types or specific variables to be interpolated. Thus,
is difficult to assign spatial interpolation methods as the “best practices” based on a given datasets
without a prior investigation of their accuracy [22]. However, spatial interpolation has a profound
impact on several factors including sample size, sample design and the nature of the data. Moreover,
the predictive performance of the method were not consistent as shown in previous studies, while as
the variation increases, the accuracy of all methods changes either increases or decreases [23]. Yet,
there is no proved consistent findings about variation and how the previously mentioned factors affect
the performance of the spatial interpolation methods. Therefore, it is difficult to select an appropriate
spatial interpolation method for a given specific input dataset due to variation within the data [20].

There have been some research studies focusing on interpolating soil moisture [22,24–27].
For example, [22] demonstrated that ordinary kriging and Inverse Distance Weighting (IDWmethods
employed for the estimation of soil moisture at complex terrain results in poor performance due to
low spatial autocorrelation of soil moisture at small catchment scale [24,25,28]. Another study [27],
compared different interpolation methods (inverse distance weighting, multifarious forms of kriging,
regularized spline with tension and thin plate spline) for estimating soil moisture in an area with



Resources 2019, 8, 70 3 of 17

complex topography in southwest China. Their results indicated that inverse distance weighting had
the best performance, at least this was the case in their study.

The present study builds on studies such as the above, aiming at developing a geo-spatial database
for soil moisture at district level and assessing a range of widely used spatial interpolation techniques
for soil moisture estimation using GPS-aided information. Four spatial interpolation methods, namely
Inverse Distance Weighting (IDW), Spline, Ordinary Kriging models and Kriging with External Drift
(KED) are compared in estimating soil moisture. As a case study, Varanasi city located in India is used,
and for this region to our knowledge for the first time a soil moisture destitution map is developed for
the area taking into account all the particular environmental characteristics of the region. An additional
added value of our study is also the use of remote sensing techniques to define Digital Elevation
Model (DEM) and Land Cover maps and the incorporation of soil organic carbon information as a
secondary variable.

2. Materials and Methods

2.1. Study Area

The study area chosen is Varanasi City, India. The study area extends from 25◦10’3” and 25◦35’1”
N to 82◦40’5” and 83◦12’1” E. It covers a total area of 1535.00 km2 which 1371.22 km2 is under
rural land and 163.78 km2 is under urban land and it is elevated above mean sea level at 80.71 m
(Figure 1). The River Ganga here flows south to North, having the highest flood level at 73.90 m
(1978) and the lowest river water level is approximately 58 m. It is a part of Indo-Gangetic plain
covering parts of alluvial deposit of river Ganga and Varuna makes the favorable conditions like
fertile soil, plain topography for settlement, availability of fresh water have intense bearing on the
high population density along with the historical development of the town as an oldest pilgrimage
city in India. It consists mainly of sand, silt and clay interspersed by pellets stones at a few places
nearby rivers. Climatically the region has sub-tropical monsoonal climate characterized by seasonal
extremities. It has humid sub-tropical climate and experiences large variation between summer and
winter temperatures. The total annual precipitation is 10,582 mm and humidity is ~70% and mean
maximum annual temperature is ~32 ◦C and mean minimum annual temperature is ~19 ◦C. The studied
area is situated on the crescent shape bank of perennial river Ganga up to a stretch of 2525 km2 which
has high seasonal variations in discharge due to monsoonal impact.
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The entire Varanasi district, including nine district blocks, namely, Varanasi City, Arajiline, 
Sewapuri, Baragaon, Pindra, Cholapur, Harhua, Chiraigaon and Kashi Vidya Peeth (KVP) was 
surveyed to collect soil samples with 5 cm diameter core pipe and up to the depth of 5 cm and 20 cm 
from the surface. From each block, 10 locations were chosen randomly for consideration with a 
horizontal distance of 5 to 9 km among locations and in different directions. The Varanasi city block 
was excluded from sample collection as it is a fully urban area. Major soil samples were taken from 
paddy fields and some sample points from barren land and plantation area because this study has its 
main focus on soil moisture and its related attributes so non-arable lands are of less importance. The 
entire fieldwork was completed during the months of August and September 2015 for a total of 82 
locations (Figure 2). Out of the total 82 locations, 54 locations data were used for calibration and 28 
locations data was used for validation following the thumb rule of 2/3 for calibration and 1/3 for 

Figure 1. Location map of the study area.

2.2. Datasets and Methodology

The entire Varanasi district, including nine district blocks, namely, Varanasi City, Arajiline,
Sewapuri, Baragaon, Pindra, Cholapur, Harhua, Chiraigaon and Kashi Vidya Peeth (KVP) was
surveyed to collect soil samples with 5 cm diameter core pipe and up to the depth of 5 cm and 20 cm
from the surface. From each block, 10 locations were chosen randomly for consideration with a
horizontal distance of 5 to 9 km among locations and in different directions. The Varanasi city block
was excluded from sample collection as it is a fully urban area. Major soil samples were taken from
paddy fields and some sample points from barren land and plantation area because this study has
its main focus on soil moisture and its related attributes so non-arable lands are of less importance.
The entire fieldwork was completed during the months of August and September 2015 for a total
of 82 locations (Figure 2). Out of the total 82 locations, 54 locations data were used for calibration
and 28 locations data was used for validation following the thumb rule of 2/3 for calibration and 1/3
for validation. Soil moisture (in % of vol. vol.−1) data on field for every location was measured by
Stevens Hydraprobe at 5 cm and 20 cm depths. GPS (global positioning system) was used to record
coordinates of every location that was used further in map processing in GIS. The data processing and
analysis was worked with ArcGIS v10.1 (ESRI, Redlands, CA, USA) and ENVI v5.2 (Exelis, Boulder,
CO, USA). Statistical analysis was performed using spatial analyst of ArcGIS v10.1, RStudio platform
and Microsoft Excel packages.
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Figure 2. Sampling site locations in the study area.

Soil moisture was estimated using mean values from soil moisture measurements that took place
at the above mentioned 82 locations of the study area. The soil moisture measurements took place daily
during the months of August and September of 2015. Also, in the studied interpolation techniques,
for each location, the mean values of soil moisture at the two different depths (5 and 20 cm) were used
as input.

In addition, the above mentioned 82 soil sampling locations were used to obtain the appropriate
information regarding the soil organic carbon. In turn, soil organic carbon information was incorporated
in KED interpolation method as a secondary variable. Also, in this study a series of statistical metrics
(Percent bias (%Bias), root mean square error (RMSE), mean absolute error (MAE)) were utilized in
order to determine the performance of the different interpolation models.

2.3. Methodology

2.3.1. Soil Moisture and Organic Carbon Estimation

In this study, soil moisture measurements were conducted using the Stevens hydraprobe.
This provides a measurement of the average volumetric water content along the length of the
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waveguide. Among the most important advantages of this technique are that it is non-destructive to
the study site and is not labour intensive [29,30].

The amount of organic carbon present in the soil samples was determined applying the
Walkley-Black chromic acid wet oxidation method. The oxidisable organic matter in the soil is
oxidized by 1N K2Cr2O7 solution to estimate soil organic carbon. For preparation of 1 N (normality)
Potassium dichromate solution, 49.040 g of K2Cr2O7 was dissolved in the deionized water and then
the volume of the volumetric flask was made to 1 litre. Second solution was prepared for 0.4 N ferrous
ammonium sulphate. 0.4 N ferrous ammonium sulphate solution, 112 g of FeSO4 (NH4)6·7H2O was
dissolved in 800 mL of deionized water. Then, 15 mL of concentrated H2SO4 was added to facilitate
proper dissolution. Following this procedure, the volume of the solution was made to 1 litre and
thereafter, the solution was stored in a dark bottle.

The soil sample was crushed and filtered using a 0.42 mm sieve followed by drying in the oven.
Thereafter, dried weighted soil sample was transferred to a 250 mL Erlenmeyer conical flask. 10 mL
of potassium dichromate was added to the dried soil followed by gentle swirling to allow proper
mixing of the solution with the soil. Then, 20 mL of concentrated H2SO4 was added to the soil solution.
Following this it was allowed to stand for 1 hour for its proper digestion. Then 200 mL of distilled
water was added and allowed to cool. It was then mixed with 2 drops of diphenyl indicator and
titrated against 0.4 M ferrous ammonium sulphate. Before analysing the samples, a blank was tested
and titrated against the same. The amount of organic carbon in the soil samples was calculated using
the following formula (Walkley-Black chromic acid wet oxidation method):

Organic Carbon (%) =
0.003 g×N× 10 mL× (1− T

S ) × 100

ODW
(1)

where; N is the normality of K2Cr2O7 solution, T is the volume of FeSO4 used in sample titration (mL),
S is the volume of FeSO4 used in blank titration (mL) and ODW is the oven-dried sample weight.

The soil organic carbon was estimated using mean values from soil organic carbon
analysis-measurements that took place at the above mentioned 82 soil sampling locations of the study
area (complex samples at two different soil depths 5 cm and 20 cm for each location). The sampling
campaign took place during the months of August and September of 2015. In turn, the mean values
of the soil organic carbon for each of the 82 locations were used as a secondary variable in KED
interpolation method.

2.3.2. Digital Elevation Model (DEM)

A DEM helps in the demonstration of the topographic data and plays an important role in the
modelling and prediction of floods [31]. DEM involves data in a geodetic coordinate system that is in
longitude and latitude. The Shuttle Radar Topography Mission (SRTM) digital elevation data, produced
by NASA (The National Aeronautics and Space Administration) originally, is a major breakthrough in
digital mapping of the world, providing a major advance in the accessibility of high quality elevation
data for large portions of the tropics and other areas of the developing world. The SRTM 90 m DEM
provided in mosaicked 5◦ × 5◦ tiles was used in this study. The vertical error of the DEM’s is reported
to be less than 16m. In our study, the DEM of SRTM was downloaded from earth explorer official
website which is easily available online after minimum formalities.

2.3.3. Database for Land Use Land Cover

The Landsat images were downloaded from the United States Geological Survey (USGS) portal
(http://www.usgs.gov/). Landsat 8 (L8) data was incorporated with the study of image classification
with total eight bands. L8 was launched in 2013 and it has Enhanced Thematic Mapper (ETM+) sensor,
185 km swath, 8 bits, SWIR 30 m and TIR 60 m. World Geodetic System 1984 (WGS84) was used for
geocentric reference (Table 1).

http:// www.usgs.gov/
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Table 1. Technical details of Landsat 8 dataset used in this study.

Sensor Type Path Row Spatial Resolution
(in Meter)

Date of
Acquisition Season Time

Landsat 8 142 39 30 22 April 2013 summer 23:31

2.3.4. Image Classification

Following the data acquisition, bands stacking and image subset was applied to the images to
facilitate computational efficiency in data handling. After this step, land use/cover classes to be included
in the classification maps were decided and representative training sites for each of those classes
were selected. Approximately 150 pixels per class (600 total pixels) were selected from homogeneous
areas. The separability of the selected training points for all cover classes were examined in ENVI
(v 5.2, Exelis, Boulder, CO, USA) software. Then, a pixel based supervised image classification that
is, Support Vector Machine with Radial Basis Function (SVM RBF) [32,33] was implemented to the
acquired Landsat images in ENVI using the selected training data. SVMs can produce accurate and
robust classification results on a sound theoretical basis, even when input data are non-monotone
and non-linearly separable. So, they can help to evaluate more relevant information in a convenient
way. Since they linearize data on an implicit basis by means of kernel transformation, the accuracy
of the results does not rely on the quality of human expertise judgment for the optimal choice of the
linearization function of non-linear input data. SVMs operate locally, so they are able to reflect in their
score the features of single companies, comparing their input variables with the ones of companies in
the training sample showing similar constellations of financial ratios. Although SVMs do not deliver a
parametric score function, its local linear approximation can offer an important support in recognising
the mechanisms linking different financial ratios with the final score of a company. For those reasons
SVMs are regarded as a useful tool for effectively complementing the information gained from classical
linear classification techniques [34].

2.4. Spatial Interpolation Methods

There are several methods developed for spatial interpolation in various disciplines with a number
of different terminologies used to distinguish them, including “interpolating” and “non-interpolating”
methods or “interpolators” and “non-interpolators” [35]. The spatial interpolation methods covered
in this study focuses on four methods namely IDW, spline, kriging and linear spatial interpolation
methods. All of these methods are widely used in interpolation studies and their implementation was
incorporated in most relevant software packages.

Spatial interpolation methods are widely used in soil analysis in environmental studies, briefly
fall into three categories: 1) non-geostatistical methods, 2) geostatistical methods and 3) combined
methods. In geostatistics, the methods that are capable of using secondary information are often
referred to as “multivariate,” while the methods that do not use the secondary information are called
“univariate” methods. Here, it must be noted that multivariate usually refers to more than one response
variable, despite of the fact that in some references it also refers to more than one explanatory variable
(usually referred to as multiple variables).

2.4.1. Inverse Distance Weighting (IDW)

The inverse distance weighting or inverse distance weighted (IDW) method estimates the values
of an attribute at unsampled points using a linear combination of values at sampled points and
weighted by an inverse function of the distance from the point of observation to the sampled points.
The assumption is that sampled points closer to the unsampled point are more similar to it than those
further away in their values. The weights can be expressed as:
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γi =
1/dp

1∑n
i=1

1
dp

1

(2)

where, di is the distance between x0 and xi, p is a power parameter and n represents the number of
sample points used for the estimation.

The main factor affecting the accuracy of IDW is the value of the power parameter [36]. Weights
diminish as the distance increases, especially when the value of the power parameter increases, so nearby
samples have a heavier weight and have more influence on the estimation and the resultant spatial
interpolation is local [37]. The choice of power parameter and neighbourhood size is arbitrary [38].
The most popular choice of p is 2 and the resulting method is often called inverse square distance
or inverse distance squared (MacEachren and Davidson). The power parameter can also be chosen
based on the error measurement (e.g., minimum mean absolute error, resulting the optimal IDW) [18].
The smoothness of the estimated surface increases as the power parameter increases and it was found
that the estimated results become less satisfactory when p is 1 and 2 compared with p is 4 (Ripley, 1981).
IDW is referred to as “moving average” when p is zero [36], “linear interpolation” when p is 1 and
“weighted moving average” when p is not equal to 1 [21]. The IDW works well with regularly spaced
data but it is unable to account for clustering [36].

2.4.2. Splines and Local Trend Surfaces (SPLINE)

The splines consist of polynomials with each polynomial of degree p being local rather than global.
The polynomials describe pieces of a line or surface (i.e., they are fitted to a small number of data points
exactly) and are fitted together so that they join smoothly [20,38]. The places where the pieces join are
called knots. The choice of knots is arbitrary and may have a dramatic impact on the estimation [20].
For degree p = 1, 2 or 3, a spline is called linear, quadratic or cubic respectively. Typically the splines
are of degree 3 (i.e., are cubic splines) [38]. The local trend surfaces (LTS) fit a polynomial surface
for each predicted point using the nearby samples. Splines are deterministic with locally stochastic
properties. Splines are piece-wise functions using a few points at a time. The interpolation predictions
can be quickly calculated and predictions are very close to the values being interpolated, providing the
measurement errors associated with the data are small [20]. Splines retain small-scale features but there
are no direct estimates of the errors. Splines implementation to data on a grid requires special care
because if the dataset does not have the direct information needed for reliable prediction the dataset
cannot provide direct information on residual variance [36]. Exact splines may produce local artefacts
of excessively high or low values. These artefacts can be removed using the Thin Plate Splines (TPS),
where an exact spline surface is replaced by a locally smoothed average [20]. TPS can also be extended
to include multivariate spline function [39]. TPS may provide a view of reality that is unrealistically
smooth and thus generate misleading results [20]. Splines technique provides enough flexibility for
local geometry analysis that can often be used as input to various process-based models [40]. However,
most of the surfaces or volumes are neither stochastic nor elastic media but are the result of a host of
natural (e.g., fluxes, diffusion) or socioeconomic processes. Improvements in accuracy and realism can
be expected by employing spatially-variable adaptive interpolation and by further developments in
model-based interpolation [39].

2.4.3. Kriging: A Geo-Statistical Interpolators

Geostatistical approaches are used to: 1) describe spatial patterns and interpolate the values of
the primary variable at unsampled locations; and 2) model the uncertainty or error of the estimated
surface. Originally in geostatistics, Kriging or Gaussian process regression is a method of interpolation
for which the interpolated values are modelled by a Gaussian process governed by prior covariances
to optimize smoothness of the fitted values. Under suitable assumptions on the priors, Kriging gives
the best linear unbiased prediction of the intermediate values. Interpolating methods based on other
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criteria such as smoothness need not yield the most likely intermediate values. The method is widely
used in the domain of spatial analysis. The technique is also known as Wiener–Kolmogorov prediction,
after Norbert Wiener and Andrey Kolmogorov.

All kriging estimators are variants of the basic following equation:

z(x0) − µ =
n∑

i=1

λi[z(xi) − µ(x0)] (3)

where: µ is a known stationary mean, assumed to be constant over the whole domain and calculated
as the average of the data (Wackernagel, 2003). The parameter λi is kriging weight; n is the number of
sampled points used to make the estimation and depends on the size of the search window; and µ(x0)
is the mean of samples within the search window.

2.4.4. Ordinary Kriging (OK) and Kriging with an External Drift (KED)

Ordinary kriging (OK) is a linear interpolator that estimates a value at a point of a region for
which the variogram is known, without prior knowledge about the mean of the distribution. In this
method a random function model is used, in which the bias and error variance can both be calculated
and then weights are chosen for the nearby samples such that they ensure that the average error for
the model is zero and the modelled variance is minimized. In order for the estimator to be unbiased in
this technique implementation, the sum of these weights needs to equal one [35,41].

The kriging with an external drift (KED) incorporates the local trend within the neighbourhood
search window as a linear function of a smoothly varying secondary variable instead of as a function
of the spatial coordinates [42]. The trend of the primary variable must be linearly related to that of
the secondary variable. This secondary variable should vary smoothly in space and is measured at
all primary data points and at all points being estimated. Kriging has few advantages and also some
drawbacks. It provides the best linear unbiased estimate. It also provides a measure of the error or
uncertainty at the unsampled points. However, it assumes stationarity of data, which is usually not
true, although this assumption can be relaxed with specific forms of kriging.

Generally, Kriging requires a large number of samples, at least 100, to produce a reliable estimation
of variogram [38]. This limitation could be overcome by using in KED the Residual Maximum
likelihood (REML) variogram because predictions based on REML variograms are generally more
accurate than those from the conventional moment variograms with fewer than 100 samples [43].
For spatial prediction of soil variables where the local mean can be expressed a linear function of some
auxiliary (external drift) variable, the state-of-the-art is to estimate the spatial covariance parameters of
the residual variation by residual maximum likelihood (REML), as it is described that is less sensitive
to outliers [44]. In such cases, a sample size of 50 appears adequate [43]. Thus, in this study the
REML estimator in KED interpolation method was used. In KED the secondary information provides
information only about the primary trend of the point of interest and tends to strongly influence the
estimate especially when the estimated slope of the local trend model is large. In the present study the
secondary information that was used concerns the soil organic carbon.

2.5. Statistical Criteria

In the following section a short description of the different statistical metrics used in our study,
namely the %Bias, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) is provided.
Percent bias (%Bias or PBIAS) measures the deviation of the simulated values from the observed
ones [45]. The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model
simulation. Positive values indicate overestimation bias, whereas negative values indicate model
underestimation between simulated and observed. The result is given in percentage (%) [43].

RMSE is one of the measures used to assess accuracy of spatial analysis and remote sensing
products [45]. The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a widely
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used measure of the differences between values (sample and population values) predicted by a model or
an estimator and the values actually observed [46]. RMSE represents the standard deviation of sample
and the differences between predicted values and observed values [46]. These individual differences are
called residuals when the calculations are performed over the data sample that was used for estimation
and are called prediction errors when computed out-of-sample [45]. RMSE serves to aggregate the
magnitudes of the errors in predictions for various times into a single measure of predictive power [47].
RMSE is a good measure of accuracy but only to compare forecasting errors of different models for
a particular variable and not between variables, as it is scale-dependent [48]. The lower the RMSE
value, the better performance of the model is [49]. Last but not least, MAE measures the average
magnitude of the errors in a set of forecasts, without considering their direction and measures accuracy
for continuous variables [50]. It is a quantity used to measure how close forecasts or predictions are to
the eventual outcomes and at the same time is a common measure of forecast error of a model. It is a
linear score which means that all the individual differences are weighted equally in the average [45].

3. Results

This section presents the main study results. All the models and techniques utilized in this
study are evaluated along with map interpretation of DEM, LULC, soil moisture and organic carbon.
This is followed by the statistical analysis performance to get a conclusion for the spatial interpolation
techniques. Digital elevation map of Varanasi district is showing clearly that the average elevation
varies from 47 m to 99 m approximately across the region (as shown in Figure 3). In general, elevation
has declining trend from east to west due to its geological characteristics and topographical feature
of the Vindhayan plateau formation at the west. On an average, south western and north western
parts have more elevation above mean sea level then the rest of the areas. It is well known that the
Eastern part has the holy river Ganga flowing from north east to south west in this region. Therefore,
it is likely to have lower elevation due to lateral erosional work of the river covering southern parts of
the study site.
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3.1. Nature of Land Use and Land Cover of the Varanasi

The land use land cover (LULC), (2013) map of Varanasi district (Figure 4) shows that the major
area is dominated by agriculture classes. Generally open space, fallow-land and other vegetative covers
were taken as agriculture only so that generalization as per the study objectives can be done (see Table 2).
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Some vegetation cover that is mainly plantation, denoted with a green colour was spread inside and
nearby city area especially. Major urban agglomeration can be seen around Varanasi city block and
northern Easter part of Kashi Vidya Peeth block along the stretches of river Ganga. While remaining
blocks of Harhua, Pindra, Cholapur, Arajiline, Baragaon, Chiraigaon and Sewapuri have fewer urban
parts except few central market locations. Overall nature of urbanization is considered spurious rather
than planned. The relation between mean SM and Land use land cover showed that marginally highest
variation of SM is found over urban area followed by agriculture, while least variation is detected over
sandy areas.
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Table 2. Land Use Land Cover Statistics with mean SM (%) distribution.

Serial No. Cover Class Area in Hectares SMMin. SMMax. SMMean

1 Urban 116,823.6 15.52 46.67 25.56

2 Water 22,478.4 – – –

3 Sand 3474.99 23.53 35.15 30.33

4 Agriculture 52,2763.4 15.60 46.34 25.43

3.2. Soil Moisture Distribution across Study Area

3.2.1. Soil Organic Carbon Distribution the Secondary Variable of KED Method

Regarding the kriging with an external drift (KED), as mentioned in the methodology section,
the trend of the primary variable must be related to the secondary variable (soil organic carbon).
Distribution of soil organic carbon is varying from 0.03% to 2.5% across the study region showing
fluctuation over space. It is interesting to note that there are some areas like parts of Baragaon, Pindra
and KVP, where soil moisture is high, organic carbon is also high where as some areas like Varanasi
city block and Chiraigaon, is showing contrary pattern where soil moisture is high but organic carbon
is low. Possible reason could be the use of ground water for various uses in city area lead to low
soil moisture. Blocks such as Harhua, Sewapuri, western-central Baragaon and northern Cholapur
have relatively low soil moisture as well as low organic carbon that could have possibly due to its
agricultural dominance.
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Figure 5a illustrates the soil moisture trends (mean values of soil moisture at the two different
depths) and soil organic carbon values at the 82 selected soil moisture field-measured locations.
As shown, soil moisture and organic carbon is following a similar trend of ups and downs except
at few locations of Ahrak, Bahrampur, Sonbarsha, Siswa, Paragdih, Sulatnipur village. Figure 5b
illustrates the correlation between soil moisture and soil organic carbon values. The above, indicates the
appropriateness of using soil organic carbon as a secondary variable in KED method. Some mismatching
between OC and SM could be ascribed to the agricultural practices in the area such as tillage and
irrigation of the crops. Due to overturning of the soil in some areas because of tillage practices some
poor agreement found between the two variables used in this study. Further in some areas, due to
irrigation some poor relation is found between OC and SM can be also seen in the graph. Figure 5b
provided a scatterplot of SM and OC, which indicates that some relationship exist between the two
parameters and hence can be used as an external variable for soil moisture interpolation in KED method.
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From all the maps of the soil moisture produced from all four models of spatial interpolations,
of both the data set (calibration and validation), it is evident that soil moisture is decreasing from east
to west while. Looking at the overall map of soil moisture including all sample points (Figure 6) is
showing that the eastern stretch from north to south covering Varanasi city block, parts of KVP, eastern
Chiraigaon, central Sewapuri, northern-eastern Baragaon block have high soil moisture ranging from
25% to 50%.Resources 2019, 8, x FOR PEER REVIEW 14 of 18 
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Figure 6. (a) Soil moisture and (b) Organic carbon distribution map of the study area, using the KED
interpolation method.

It is evident from the field visit conducted at the site that these are mainly urban in nature and
dominated by built up areas. This can also be clearly seen from the LULC map (Figure 4). Thus,
it can be inferred that area of high urban agglomerations have a higher amount of soil moisture in
comparison to the agricultural lands as plants utilizes SM for their growth. Lands near to the water
bodies and river beds, are also in line with the same trend of high soil moisture. From the DEM map
(Figure 3) of Varanasi district, it is visualized that areas with a high altitude have a negative bearing on
soil moisture and vice versa

3.2.2. Performance Evaluation of Spatial Interpolation Techniques

By visualization of the four soil moisture interpolation maps (IDW, OK, KED and Spline) as shown
in Figure 7a–d, it can be concluded that KED and OK has better prediction than IDW and Spline.
KED and OK have both captured more regional variation of soil moisture whereas the splines technique
has smoothened the map leading to rough estimation and very generic profile of soil moisture map.
IDW results capture more variation of local soil moisture in comparison to Splines method. Figure 7a–d
represents the soil moisture maps of cross calibration data using four different techniques of spatial
interpolation, namely IDW, OK, KED and Spline.

In this study, the accuracy and robustness of all the four spatial interpolation methods of soil
moisture was evaluated. The studied spatial interpolation results were discussed in terms of their
assumptions and applicability using statistical performance indices such as RMSE and %BIAS. Results
indicated a better performance of KED in comparison to IDW, OK and Spline, at least in our study.
The final model variogram for OK and KED was chosen on the basis of the lowest RMSE from cross
validation. Regarding the variogram characteristics of OK and KED the distance after which data
are no longer correlated (range) was equal to 1700 and 1900 m, respectively. Moreover, the RMSE
value is highest (9.32) for IDW followed by Spline, OK and lowest for KED (8.69). In terms of RMSE,
IDW performs the least in interpolating soil moisture. In terms of %BIAS, it is evident, at least in our
study, that Spline is more sensitive to the significant over prediction than the other three methods
(see Table 3). The analysis of the distribution of RMSE and %BIAS shows that the soil moisture was
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effectively predicted with KED techniques with low bias and RMSE. IDW, OK and KED performs
underestimations of model error as their values are in negatives. The MAE statistics shows that KED
performed better than OK, IDW and Spline as their values are more than the KED. Variance (difference
between RMSE and MAE) of the model was high in KED and OK (both have values of 3.17 percentage)
followed by IDW (1.18). Therefore, it can be said that the prediction of soil moisture values was better
using the KED method than with the rest of the techniques.
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IDW SPLINE OK KED

RMSE 9.32 8.82 8.73 8.69

%BIAS −0.3 0.9 −0.9 −0.9

MAE 6.14 8.82 5.56 5.52
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4. Conclusions

This study clearly demonstrated that the investigation of soil moisture distribution using GIS
spatial interpolation techniques is an integral part of understanding the relationships between soil
characteristics. Soil moisture is important not only to agriculture but also for hydrology and climatology.
Remote sensing devices, such as satellite radiometers, are useful tools to obtain soil moisture information
over a large region. However, effective ground truth calibrated data for satellite are lacking and this
study fills this gap in providing values for soil moisture at local spatial level. Soil moisture distribution
over the study area shows that higher elevation has lower soil moisture content and vice versa and its
spatial distribution is not uniform over space and time. Even organic carbon profile has not certain
pattern of distribution but in general, it is low in areas of vegetation cover and high in urban regions.
The performance of spatial interpolation techniques depends on several parameters such as sample size,
sampling design, sample spatial distribution, data (density and variation), surface type, data quality,
input data uncertainty, poor choice or implementation techniques. Further data quality depends upon
the distribution, accuracy, variance and range and spatial correlation for its performance. In this study,
not all these mentioned parameters were incorporated individually due to constraints.

The study of spatial interpolation of soil moisture based on ground measurement data of soil
moisture revealed that kriging with external (KED) is performing better than ordinary kriging (OK),
inverse distance weighting (IDW) and Spline methods in terms of model accuracy and performance
using cross validation techniques. KED is performing well over OK when secondary variable of
organic carbon was added. This study can be extended in future, incorporating many parameters
like soil texture, NDVI (Normalized Difference Vegetation Index), LST (Land Surface Temperature),
bulk density and can also be calibrated by satellite data of soil moisture. This study can also lead a
way for spatial analysts to see which method can perform well while adding more parameters and
what will be the threshold.
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