Identification of Aerosol Sources and Its Characterization at Varanasi: An Air Mass Based Study

1Atmospheric Research Laboratory, Department of Physics, 3Department of Geophysics, 4Department of Chemical Engineering, Indian Institute of Technology, 6Department of Chemical Engineering, Indian Institute of Technology, 5DST - Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India.

2Graduate School of Environmental Studies, Nagoya University, Japan.

4Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India.

5India Meteorological Department, Lodhi Road, New Delhi, India.

*Corresponding Author: S. Tiwari Email: pshanitiwari@gmail.com

Submitted: 04/01/2018
Accepted: 22/03/2018

Abstract

A continuous aerosol measurement were carried out at Varanasi, during 2011 using ground based hand-held sunphotometer. A discrimination of aerosol characteristics was made over the station based on their possible sources, identified from air mass back trajectory analyses at 1000m altitude above mean sea level. Four different types of source sectors were identified, viz. Type I (mainly from north-east India), Type II (mainly from north-west India like Haryana and Punjab), Type III (mainly from Middle East and Thar Desert region due to the long range transportation mixed with anthropogenic aerosol), and Type IV (mainly from the central and south India and also from oceanic region (from the Bay of Bengal), with annual contributions of nearly 9%, 32%, 36%, and 23%, respectively to the total aerosol loading. These aerosol types show a strong seasonal heterogeneity in contributions depending on their emission sources. Type II aerosols are dominated in post-monsoon (~61%) and winter (~46%) seasons while Type III aerosols are dominated in pre-monsoon (~40%) and winter (~48%) seasons. We found that local/anthropogenic aerosols are more dominant than long range transported aerosols and play crucial role in suitable meteorological condition. The measured aerosol optical properties such as aerosol optical depth (AOD) and Ångström exponent (AE) were analyzed for the identified sectors of aerosol sources to understand their detailed characteristics over the station. The annual mean value of AOD (AOD) for Type I, Type II, Type III, Type IV aerosols are 0.98±0.31 (0.93±0.26), 0.98±0.30 (1.06±0.22), 0.76±0.30 (0.92±0.25), 0.76±0.32 (0.85±0.30), respectively. The curvature study has been also carried out to corroborate the observed results. The direct aerosol radiative forcing was found to be maximum at the atmosphere (ATM) and top of the atmosphere (TOA) for Type III aerosol with maximum heating rate 2.89±0.30 K day−1.

Keywords: Aerosol types, Air mass, Ångström exponent, Heterogeneity, Indo-Gangetic Basin.

1. Introduction

Atmospheric aerosols along with trace gases are the major constituents of atmosphere, which play vital role in Earth’s climate system (Jakovides et al., 1996; Kaufman et al., 2002; Morgan et al., 2006; Kaskaoutis et al., 2007a; IPCC, 2007, 2013; Seinfeld et al., 2016). In last few decades, aerosols are recognized as a major source in determining climate change (Wild, 2009) as they influence the Earth’s climate system directly by scattering and absorbing the solar and terrestrial radiations (Satheesh et al., 2006; Gautam et al., 2010; Srivastava et al., 2014) and indirectly by forming the clouds and modifying their macro and micro-physical properties (Twomey, 1991; Altaratz et al., 2014;
Sarangi et al., 2017). Aerosols properties (both physical and chemical) show a large spatial as well as temporal variation due to different emission sources, chemical composition and their transported pathways resulting some significant impacts on air quality and earth climate system (Tiwari et al., 2015; Sarangi et al., 2017; Sharma et al., 2017; Zhao et al., 2017). The climatic effects of aerosols are closely related to their optical properties, surface albedo and the relative position in respect to that of clouds (Koch and Del Genio, 2010; Kaskaoutis et al., 2011; Srivastava et al., 2014; Kant et al., 2017). The uncertainty in determination of radiative forcing due to aerosol is no doubt decreases at global level but it is still quite uncertain at regional level. The uncertainty in aerosol radiative forcing at regional level scale is mainly because of their significant heterogeneity in spatial and temporal distribution and inadequate information about the optical and radiative characteristics of their types/compositions (IPCC, 2007, 2013). Heterogeneity in aerosol distribution may lead to different aerosol types at both regional as well as global level with significant climatic response from negative (cooling) to positive (heating) (Kaskaoutis et al., 2007b; Srivastava et al., 2011, 2014; Tiwari et al., 2016, 2015, 2013). Thus, the characterization of aerosol in the aspect of different aerosol types may reduce the uncertainty in earth’s climate system and will be helpful in the improvement of climate modelling.

The Indo-Gangetic Basin (IGB) region traversed by the Ganga river and its tributaries is one of the largest, densely populated, industrialized and developing region of the world where aerosol not only affect the Indian monsoon but also the global climate system (Satheesh et al., 2006). The region is of great research interest due to its unique topography surrounded by the Himalayas to the north, moderate hills to the south, Thar Desert and Arabian Sea in the west, and Bay of Bengal in the east (Prasad et al., 2006; Tiwari et al., 2013). The topography of IGB and variable meteorological condition control the dynamic behaviour of atmospheric aerosol in space as well in time. IGB is dominated by the urban/industrial aerosols (Guttikunda et al., 2003; Sharma et al., 2014; Monkkonen et al., 2004; Tiwari et al., 2009), which demonstrate significant seasonal variability based on the complex combination of anthropogenic factors mixed with the contribution from the natural sources (mostly dust), particularly during the pre-monsoon period (Srivastava et al., 2012a; Tiwari et al., 2013). With the increase in population density and energy demands, aerosol emissions have been gradually increasing, mainly through fossil-fuel and bio-fuel combustions (Lawrence and Lelieveld, 2010). The large increase in anthropogenic aerosols over IGB is hypothesized to cause considerable changes to regional monsoonal climate (Ramanathan et al., 2005; Lau et al., 2006; Dey and Tripathi, 2008; Gautam et al., 2010; Das et al., 2015). Numerous studies using satellite observations and ground-based measurements have revealed an overall increase in aerosol optical depth (AOD) over India, especially in IGB (Sarkar et al., 2005; Porch et al., 2007; Lawrence and Lelieveld, 2010; Dey and Di Girolamo, 2011; Kaskaoutis et al., 2011; Kharol et al., 2012; Ramachandran et al., 2012; Mishra et al., 2012; Satheesh et al., 2017). Earlier studies over IGB suggest the existence of different aerosol types from various natural and anthropogenic emission sources (Sharma et al., 2014; Tiwari et al., 2015, 2016; Bibi et al., 2017), resulting to different types of aerosol loading which have different radiative effects. Thus, for the better understanding of aerosol impacts of earth energy budget, the improvement in aerosol characterization with high spatial - temporal resolutions; particularly on the basis of aerosol type is highly needed.

The present study focuses on understanding of the aerosol characteristics over Varanasi, a semi-urban station over the eastern IGB region, for the year 2011. An attempt has been made to identify major sectors of aerosol sources over the station based on the air mass back-trajectory analysis using Hybrid Single Particle Lagrangian Integrated Trajectories (HYSPLIT) model. Furthermore, aerosol characteristic from these emission sectors and their climate impacts is also studied. Results observed in present study were found to be quite considerable with aerosol optical characteristics measured by several scientific groups throughout the world and will be useful for the climate modeler.

2. Site Description and Meteorological Conditions

Varanasi (25.200′N, 82.900′E and 83m above msl) is situated on the bank of river Ganga. It is a semi-urban city located at the eastern part of IGB in north India. It is heavily polluted and has high population density causing a high aerosol loading throughout the year which shows large seasonal and temporal variability (Tiwari et al., 2015; Tiwari and Singh, 2013). A large scale uncontrolled urbanizations and industrial developments are the major causes for air, water and land pollution (Prasad et al., 2006). Higher aerosol loading is observed over the entire IGB, including Varanasi during pre-monsoon (Singh et al., 2004; Prasad et al., 2007; Tiwari and Singh, 2013; Tiwari et al., 2013, 2015) producing a large surface influx resulting a higher top of the atmosphere forcing and creates enough difference between surface and atmospheric forcing (Sarkar et al., 2005). Recently, Tiwari and Singh (2013) reported that Varanasi
experienced different types of aerosol loading during different seasons i.e. during pre-monsoon season, coarse mode aerosol particles (mainly mineral dust) are one of the major contributors to total aerosol loading while fine-mode anthropogenic aerosols are the major contributors during post-monsoon and winter. The station is also influenced, seasonally (mainly late pre-monsoon and monsoon season) by marine aerosols. The monthly mean variation in meteorological parameters (temperature, relative humidity, wind speed and wind direction), obtain from India Meteorological Parameters (IMD), is shown in Fig 1. Figure reveals a significant seasonal variability in all parameters. The minimum relative humidity is observed in April (37 ± 8 %) which continuous increases and reach maximum in August (85 ± 8 %). However, maximum temperature is observed in May (33 ± 2°C) and decreases continuously up to minimum value January (14 ± 4°C). During late pre-monsoon (June) and monsoon season maximum wind speed is observed which are mainly coming from the south-eastern direction. Varanasi experienced north-westerly and westerly winds from northwest India, Pakistan, and Middle East region carrying mineral dust in pre-monsoon season (Tiwari and Singh, 2013).

3. Instrumentation and Data Analysis

The ground based measurements were carried out using hand held and portable multiband sunphotometer MICROTOPS-II (Solar Light Company, USA). It contains five different interference filters at 380, 440, 500, 640, and 870 nm wavelengths and provides columnar information of aerosols. An additional channel (940 nm) is used for precipitable water vapour contents. The sunphotometer works on the principle of extension of solar radiation intensity at a certain wavelength and calculates the corresponding optical depth by using the knowledge of the solar intensity at the top of the atmosphere. The same is calculated easily by Langley method (Schmid and Wehrl, 1995). The details of MICROTOPS-II, its calibration, performance and data collection method are given elsewhere (Morys et al., 2001; Tiwari and Singh, 2013; Sharma et al., 2014). The factory calibrated instrument was deployed and operational at the Department of Physics, Banaras Hindu University, Varanasi since January, 2011. However, in the present study, the data were analysed and studied for the year 2011. We have taken the data from morning 9:00 am to 4:30 pm at every half/hour one hour on every clear sky day. During each measurement, three continuous scans are taken and processed by second order polynomial fitting and select only those data which have maximum correlation (with threshold value r>0.97) and minimum error in second order coefficient. Out of 365 days, only 239 days average AOD values have this threshold condition with 1127 numbers of data set.

4. Methodology and Theoretical Approach

Due to strong dependency of both AOD and Ångström exponent (AE) on wavelength, a realistic characterization of aerosol properties can be attempted using these two parameters (Holben et al., 2001; Pinker et al., 2001) and therefore, are widely used to identify different aerosol types over the globe (Tiwari et al., 2015; Kaskaoutis et al., 2007b). AOD and AE are the two main parameters for aerosol optical properties and the spectral variation of AOD is determined by Ångström Power law (Ångström, 1964), given by

\[\tau_\lambda = \beta \lambda^{-\alpha} \quad \ldots (1) \]

Where,

- \(\tau_\lambda \) is AOD at wavelength \(\lambda \),
- \(\alpha \) is Ångström exponent and
- \(\beta \) is turbidity coefficient, which is equal to AOD at \(\lambda = 1\mu m \).

Ångström exponent is a relatively good indicator of aerosol particle size. Higher values of AE (nearly 1-3) represent the fine mode aerosol particles while lower positive as well as negative values indicate dominance of coarse mode aerosol particles (Eck et al., 1999; Kaskaoutis et al., 2009).

The above equation (1) is a special case of more complicated equation for limited interval wavelength and particles diameter (Kaskaoutis et al., 2009). Over a wide range of wavelength, Ångström formula leads to significant inaccuracies particularly when the size distribution is multimodal in vertical atmospheric column which represent the different types of aerosols coming from different sources like biomass burning, industrial, urban, transported dust and sea salt etc. Taking the logarithms at both side of equation (1) we get

\[\ln \tau_\lambda = -\alpha \ln \lambda + \ln \beta \quad \ldots (2) \]

For two different wavelengths (\(\lambda_1 \) and \(\lambda_2 \)) AE is given by

\[\alpha = - \ln \left(\frac{\tau_{\lambda_2}}{\tau_{\lambda_1}} \right) / \ln \left(\frac{\lambda_2}{\lambda_1} \right) \quad \ldots (3) \]

The above equation implied that \(\alpha \) is invariant in the spectral range \(\lambda_1 \) to \(\lambda_2 \). This is valid only when the size distribution of aerosols in the vertical column follows at least inverse power law (Beegum et al., 2009). But, real size distributions show a variation from the power law distribution mainly when aerosol are injected from different emission sources and the spectrum has a wide range (Kaskaoutis et al., 2009; Beegum et al., 2009; Schuster et al., 2006). Under such condition, a second order polynomial fit can be applied to AOD spectra (King and Byrne, 1976; Eck et al., 1999; Kaskaoutis and Kambezidis, 2006) which can be used to quantify the curvature in spectral distribution of AODs as:

\[\ln \tau_\lambda = A_2 \left(\ln \lambda \right)^2 + A_1 \ln \lambda + A_0 \quad \ldots (4) \]
where,

Coefficient A_{2} represents the curvature which is observed in measurements. It is also a very good indicator of aerosol particle size, having negative value indicates aerosol size distributions dominated by fine mode and positive value indicates size distribution dominated by coarse mode aerosol particles (Eck et al., 1999; Kaskaoutis et al., 2009). Although, equation (4) is more precise than equation (2) for a wide spectral range yet a large error can occur especially in low turbidity conditions (Kaskaoutis et al., 2007b). Therefore, to minimise these errors, only those data have been considered which have second order polynomial fit with r value ≥ 0.97 associated with minimum errors in curvature (A_{2}). In the present study, α is calculated for the pair of wavelength 380-870 nm using equation (3). To understand the optical characteristics of aerosols over Varanasi during the study period, monthly mean values of AOD (500 nm) and AE (380-870 nm) are shown in Fig 2. Nearly similar value of monthly mean AOD is found from January to July (except for March). However, an increase is observed from September onwards, with a peak observed during November month, which could due to crop residue burning (Kaskaoutis et al., 2014) and/or Diwali effect (Singh et al., 2014) suggesting the enhancement in fine mode aerosol particles. Further, AE is found to have two peaks, one during winter period (December, January and February) and second during post-monsoon period (October and November), which indicates the dominance of fine mode particles mainly from biomass/biofuel burning. On the other hand, during summer and monsoon period, AE values are found to be relatively lower (< 0.9), which suggests presence of coarse mode particles over the station. Tiwari and Singh (2013) also reported an enhancement in coarse and fine mode aerosol loading during pre-monsoon and post monsoon season over Varanasi.

As atmospheric aerosols show large heterogeneity over the entire IGB region and have strong spatial as well as temporal variations (Tiwari et al., 2013), the region has identified with different aerosol types (Srivastava et al., 2012b, 2014; Tiwari et al., 2015). In several previous studies, aerosol types were identified using measured aerosol optical parameters (Kaskaoutis et al., 2009; Srivastava et al., 2012b, 2014; Tiwari et al., 2015). However, in the present study, we identified different aerosol emission sectors associated with their different emission sources over Varanasi using air mass back-trajectory analysis at 1000 m msl altitude and investigate aerosol characteristics in each sector. The air mass back trajectories provide significant information about the emission sources of air pollutants and their transport pathways to the measurement sites. Aerosols loading and their composition at any locations are highly influenced by the meteorological parameters over particular region which affect the air mass transport. The daily 5-day air mass back-trajectories from NOAA-HYSPLIT (National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory) model were analyzed (Draxler and Rolph, 2003) at Varanasi during 2011. Based on their transport pathways, four different sectors of air mass sources were identified as: Type I- mainly coming from north-east India, Type II- mainly coming...
from north-west India like Haryana and Punjab, Type III- mainly coming from the Middle East and Thar Desert regions due to the long-range transportation which are well admixed with anthropogenic aerosol, Type IV- mainly coming from the central and south India and also from oceanic region (mainly Bay of Bengal). The annual percentage contribution of each air mass type along with their pathways has been plotted in Fig 3. Vertical lines in each type show standard deviation, representing latitudinal spreading of air mass. Fig 3 reflects that Type I have minimum annual contribution (9.31%) while Type III have maximum annual contribution (36.16%). Apart from this, Type II and Type IV have annual contributions of 32.07% and 22.46% respectively. It was noticed from the Fig 3 that nearly 68% air masses reached at Varanasi, were mainly coming from Northern India, Middle East and Thar Desert regions. We classified the measured aerosol parameters based on inferred air masses, which are discussed in detailed in the next section.

5. Results and Discussion

5.1 Aerosol Optical Depth and Ångström Exponent for Different Aerosol Types

The characterization of aerosol particles and spectral dependence of their optical properties are important as they strongly influence the associated radiative properties (El-Metwally et al., 2008; Moorthy et al., 2009; Kaskaoutis et al., 2011). Fig 4 represents the mean spectral variation of AOD over Varanasi for the inferred air mass types during the study period. The spectral behaviour of AOD indicates information about dominant aerosol particles (fine and coarse mode) and their size distributions etc. It was noticed from the Fig 3 that the AOD has significant spectral dependence for all types, with relatively large dependence for Type I and Type II. Similar results are observed previously by Tiwari and Singh (2013) over Varanasi and by Srivastava et al. (2014) over New Delhi. Figure 4 clearly reflects that Type I aerosols have maximum AOD value for all wavelengths with relatively higher steepness in slope suggesting the dominance of fine mode aerosol particles while on the other hand Type III and Type IV have nearly similar AOD values. Type III has higher value at lower wavelength associated with less spectral dependency at higher wavelength suggesting the enhancement of fine mode aerosol particles. The air masses coming from Middle East and Thar Desert due to long range transportation carrying abundance of aerosol particles which contain both fine as well as coarse mode aerosol. Due to the gravitational settling process, however, coarse particles are settled down on the pathways resulting enhancement of fine particles reached at our study site. Srivastava et al. (2011) also reported the enhancement of fine – mode aerosol particles over Gandhi College, Ballia during pre-monsoon season, which is nearly 140 km east from...
Fig 3: The mean percentage contribution of different air mass types over Varanasi during 2011 (obtained from 5-day air mass back-trajectory analysis from NOAA Hysplit model). The vertical lines show standard deviation, representing latitudinal air mass spreading.

Fig 4: Spectral variation of AOD for different aerosol types during the study period. The vertical lines represent the standard deviation.
the study site. Tiwari et al. (2015) reported similar spectral behaviour for different types of aerosol over entire IGB and Srivastava et al. (2014) at New Delhi. In another study, Gogoi et al. (2009) have done cluster analysis of air mass back trajectories over Dibrugarh in the north-east region, and showed an enhancement in AOD over the station, which was found to be highly associated with the significant transport of mineral dust from the arid regions of west Asia and north-west part of India across the IGB and marine aerosols from nearby marine regions.

The annual mean AOD (at 500 nm) and the corresponding AE (380-870 nm) along with their maximum and minimum values for each aerosol type over Varanasi during the entire study period is given in Table 1. Mean AOD (AE) values for Type I, II, III and IV are 0.98±0.31 (0.93±0.26), 0.89±0.30 (1.06 ± 0.22), 0.76±0.30 (0.92±0.25) and 0.76±0.32 (0.79±0.25) respectively. Kaskaoutis et al. (2009) also reported the AOD (AE) value of 0.67±0.13 (1.17±0.12) for heavily urban industrial aerosol including biomass burning, which is smaller to the values observed for Type II aerosol in the present case. Results suggest that although AOD values are nearly same for different Type I, II, III aerosol, their size distribution may be different due to different source emissions. Apart from this, a seasonal pattern in aerosol loading is observed over Varanasi during study period which are given in Table 2 in terms of AOD and AE. Table 2 clearly reflects that in pre-monsoon, Type II and III aerosols have nearly equal values of AOD (AE) with the values of 0.64±0.18 (0.78±0.20) and 0.65±0.25 (0.77±0.19), respectively which indicate the probable mixing state of atmospheric aerosol (Dey et al., 2008; Misra et al., 2014). Srivastava et al. (2012) also reported nearly similar AOD (AE) values for polluted dust and polluted continental aerosols 0.63±0.21 (0.45±0.12) and 0.72±0.22 (0.78±0.12), respectively for Gandhi College. Recently, Tiwari et al. (2015) found nearly similar AOD (0.64) value but relatively lower AE value (0.44) for polluted dust aerosol over Kanpur which may due to dominance fine mode aerosol particles. Similarly, in post- monsoon season Type I and II aerosols have nearly same AOD (AE) with the values of 1.07±0.36 (1.16±0.11) and 1.02±0.28 (1.2±0.09), respectively which indicate the presence of fine mode aerosols over the station mainly from the biomass burning sources during the period which are well mixed with local anthropogenic aerosols. An interesting feature is observed that during pre-monsoon season, AE value lies below 0.8 (i.e. AE < 0.8) for all types of aerosol indicating the dominance of coarse particles, however in post-monsoon season, AE value have greater value (i.e. AE > 1) for all aerosol type suggesting the dominance of fine particles, which are also confirmed by curvature study of aerosols, discussed in next section.

In support of present assumption, we tried relating aerosol load (i.e. AOD) and particle size (i.e. AE) as suggested elsewhere (Eck et al., 1999; Pace et al., 2006; Kaskaoutis et al., 2007b, 2009, 2011; Kalapureddy et al., 2009; Pathak et al., 2012; Mishra et al., 2014; Tiwari et al., 2015). We found that there is a wide range of AOD and AE values observed for all aerosol types. For Type III aerosols, generally AOD >0.4 along with AE in the range of 0.6-1.2 is found. This suggests existence of polluted continental aerosols which resulted in the enhancement of fine mode aerosol particles. Similar observation is also noticed by Tiwari et al. (2015) and Singh et al. (2004) over another location, Kanpur, in IGB and by and Srivastava et al. (2014) for Delhi. They found similar range of values for polluted continental aerosols over Delhi, with an average value of AOD = 0.62 ± 0.16 and AE = 0.77 ± 0.14. Recently, Tiwari et al. (2015) also reported a very close range of AOD and AE (440-870 nm) for polluted continental type aerosol over entire IGB. Type II aerosols, however, show higher AE value (>0.8) with a wide range of AOD (from 0.4 to 1.4) suggesting a mixing of biomass aerosol with anthropogenic aerosol (mainly from fossil fuel). Recently, Tiwari et al. (2015) also found nearly similar range for AOD and AE for organic carbon enriched aerosol over Kanpur.

5.2 Curvature Dependency of AOD and AE for Different Aerosol Types

Several studies suggest that difference between second order polynomial coefficient have nearly equal value of angstom exponent for a given spectral band (Schuster et al., 2006; Kaskaoutis et al., 2009). Therefore, for minimum errors second order polynomial fitting is performed in AOD data set for entire spectral band and their coefficients are calculated. Fig 5 represents the correlation plot between $A_A - A_1$ and $AE_{380,870}$ for different aerosol types over Varanasi during study period. A significant correlations ($r \geq 0.98$) were observed for all aerosol types. Thus, applying second order polynomial fitting a good data set is observed which are valid for the data analysis in terms of curvature study.

Fig 6(a) shows scatter plot of curvature coefficient (A_2) against AOD$_{500}$ which provides important information about the dominant aerosol sizes. The negative values of A_2 represent concave type second order polynomial curve which are associated with the dominance of fine mode aerosol particles while positive values represent convex type curve representing dominance of coarse mode aerosol particles. A small positive value of curvature –
Table 1: Annual mean aerosol characteristics for inferred aerosol types at Varanasi during 2011

<table>
<thead>
<tr>
<th>Aerosol Type</th>
<th>AOD$_{500\text{nm}}$ (Max/Min)</th>
<th>AE$_{380-870\text{nm}}$ (Max/Min)</th>
<th>A$_2$ (Max/Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.98 ± 0.31 (1.71/0.31)</td>
<td>0.93 ± 0.26 (1.31/0.26)</td>
<td>+0.22 ± 0.64 (1.62/-0.534)</td>
</tr>
<tr>
<td>II</td>
<td>0.89 ± 0.30 (1.67/0.30)</td>
<td>1.06 ± 0.22 (1.37/0.23)</td>
<td>-0.18 ± 0.48 (1.516/-0.637)</td>
</tr>
<tr>
<td>III</td>
<td>0.76 ± 0.30 (1.77/0.22)</td>
<td>0.92 ± 0.25 (1.32/0.25)</td>
<td>+0.27 ± 0.48 (1.64/-0.56)</td>
</tr>
<tr>
<td>IV</td>
<td>0.76 ± 0.33 (1.71/0.25)</td>
<td>0.79 ± 0.25 (1.42/0.17)</td>
<td>0.82 ± 0.62 (2.63/-0.38)</td>
</tr>
</tbody>
</table>

Fig 5: Scatter plot of A_2 – A_1 Vs AE (380-870 nm).

Fig 6: Scatter plot between (a) AOD$_{500\text{nm}}$ and A_2 (b) AE$_{380-870\text{nm}}$ and A_2.
(for AOD$_{500} > 0.5$) represents the initial fine mode aerosol particles which may be modified from coagulation and gas to particles conversion process (Eck et al., 1999; Schuster et al., 2006; Kaskaoutis et al., 2007). On the other hand, nearly zero values of A_2 represent the mono-modal Jung size distribution or a bimodal lognormal aerosol size distribution without curvature (Eck et al., 1999; Kaskaoutis et al., 2007). Type IV has positive curvature, which indicates bimodal aerosol size distribution with dominance of coarse mode aerosol particles. Similar results are observed over Hyderabad and Arabian Sea by Kaskaoutis et al. (2009, 2010). Apart from this, rest three aerosol types have both types of curvature, i.e. positive as well as negative with a large spreading range. Figure reflects that Type II aerosols have majority in negative curvature which indicates dominance of fine mode aerosol particles (mainly from the Northern India, as shown in Fig 3). Recently, Kannemadugu et al. (2014) reported negative curvature for urban-industrial/biomass burning aerosol over Nagpur in central India. Kaskaoutis et al. (2009) also reported a negative curvature in majority over Hyderabad for urban/industrial aerosol under high aerosol loading during each season except post-monsoon where they observed positive curvature with equal contribution. (Fig 6a) also reflects that Type III aerosols have mostly positive curvature associated with AOD and AE value less than 0.8 and 1.0 respectively (i.e. AOD < 0.8 and AE < 1.0) indicating the dominance of coarse mode aerosol particle (mainly dust aerosol) from the Thar Desert and Middle East regions (Fig 3) due to long range transport. Type III aerosol also have negative curvature associated with the AOD ranging from 0.6-0.8 which refers bimodal lognormal size distribution (Schuster et al., 2006). A similar type of curvature is also observed by Kannemadugu et al. (2014) for desert dust aerosols over Nagpur. Observed results in present study are similar to several previous studies performed at different location throughout the world (Eck et al., 1999; Eck et al., 2001; Schuster et al., 2006; Badarinath et al., 2009; Kaskaoutis et al., 2007, 2009).

For further clarification in discrimination of aerosol types, a scatter plot between AE$_{500-870}$ and curvature is shown in Fig 6(b). In general a specific value of AE (0.5-0.9) was observed for a large spreading in curvature, which indicate a different size distribution with nearly similar AE value to produce a large difference in curvature (Schuster et al., 2006). Result suggests that only curvature may not be able to describe aerosol particle size. The data lying on or near zero curvature line associated with Jung power law distribution and have a range of AE from 0.88 to 1.2. Seasonal variation in aerosol curvature is given in Table 2. During pre-monsoon and monsoon seasons, a positive curvature is observed for all aerosol types, suggesting the enhancement in coarse mode aerosol particles in pre-monsoon and monsoon. However, a negative curvature is observed in post-monsoon and winter season for all aerosol type indicating dominance of fine mode aerosol particles.

5.3 Seasonal Heterogeneity in Aerosol Types Contribution

From the Fig 3, we observed that different types of air masses have different contributions over Varanasi. For more precise analysis of their seasonal pattern and altitudinal variation, we calculated the seasonal percentage contribution of each aerosol type along with their altitudinal variation (Fig 7). Fig 7 clearly reflects that in pre-monsoon season, there exist a mixed-type aerosol loading over Varanasi with higher contribution of Type III aerosol (~40 %), followed by Type II (~26 %), Type IV (~23 %) and Type I (~11 %). The dominance of Type III aerosol suggests the long range transportation of air masses to Varanasi. The second highest contribution (Type II) indicate towards a significant contribution from Northern India mainly known for crop residue burning during pre-monsoon season (Sharma et al., 2014; Sinha et al., 2014). Recently, Srivastava et al. (2012b) and Tiwari et al. (2013) have reported significant influence of biomass burning aerosol over entire IGB region during pre-monsoon period. On the other hand, during monsoon season, Type IV aerosols have maximum contribution (58%), which are mainly following the onset pattern of Indian summer monsoon from Indian ocean till IGB. Highest contribution from Type IV aerosols strongly suggest major contribution from oceanic region, mixed with aerosols from central Indian region. Further, Type III aerosols show second highest contribution (33%) during the monsoon, because on some days air masses over the station are reaching from Arabian sea and passing through the Thar Desert region. Type-III is also following the summer monsoon advancement over Indian subcontinent, entering from western azimuth, passing through Arabian Sea. During post-monsoon season, Type II aerosols dominates with 61% contribution, followed by Type I (25%), Type III aerosols (13%) and Type IV aerosols (1 %). The contribution of aerosols during this season are mainly due to the biomass/agricultural crop-residue burning over northwestern IGB (Tiwari and Singh, 2013; Singh et al., 2004; Badarinath et al., 2009; Sharma et al., 2009; Habib et al., 2006; Srivastava et al., 2012; Mishra et al., 2014) along with urban-industrial sources (Srivastava et al., 2014). During winter season, although Type II (46%) and Type III (48%) show -
Table 2: Seasonal mean aerosol characteristics for inferred aerosol types at Varanasi during 2011

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Aerosols Types</th>
<th>AOD<sub>500nm</sub> (Max/Min)</th>
<th>AE<sub>340,870nm</sub> (Max/Min)</th>
<th>A<sub>2</sub> (Max/Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-monsoon</td>
<td>I 0.87 ± 0.37 (1.58/0.37)</td>
<td>0.70 ± 0.14 (0.98/0.51)</td>
<td>0.82 ± 0.45 (1.62/0.17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 0.64 ± 0.18 (1.12/0.34)</td>
<td>0.78 ± 0.20 (0.44/1.13)</td>
<td>0.60 ± 0.38 (1.52/0.07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III 0.65 ± 0.25 (1.26/0.23)</td>
<td>0.77 ± 0.19 (1.24/0.36)</td>
<td>0.54 ± 0.30 (1.22/-0.13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV 0.80 ± 0.24 (1.25/0.45)</td>
<td>0.79 ± 0.22 (1.20/0.39)</td>
<td>0.56 ± 0.37 (1.35/0.04)</td>
<td></td>
</tr>
<tr>
<td>Monsoon</td>
<td>I -</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 0.75 ± 0.26 (1.00/0.40)</td>
<td>0.88 ± 0.33 (1.17/0.43)</td>
<td>0.09 ± 0.17 (0.26/-0.14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III 0.81 ± 0.26 (1.22/0.43)</td>
<td>0.85 ± 0.24 (1.31/0.51)</td>
<td>0.51 ± 0.48 (1.64/-0.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV 0.70 ± 0.34 (1.36/0.25)</td>
<td>0.77 ± 0.28 (1.42/0.17)</td>
<td>1.12 ± 0.63 (2.63/0.14)</td>
<td></td>
</tr>
<tr>
<td>Post-monsoon</td>
<td>I 1.07 ± 0.36 (1.71/0.59)</td>
<td>1.16 ± 0.11 (1.31/0.97)</td>
<td>-0.29 ± 0.20 (0.28/-0.53)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 1.02 ± 0.28 (1.67/0.49)</td>
<td>1.2 ± 0.09 (1.37/0.91)</td>
<td>-0.22 ± 0.26 (0.48/-0.60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III 0.89 ± 0.32 (1.23/0.43)</td>
<td>1.13 ± 0.13 (1.26/0.95)</td>
<td>-0.14 ± 0.35 (0.53/-0.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV 0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.085</td>
</tr>
<tr>
<td>Winter</td>
<td>I 1.06 ± 0.18 (1.19/0.93)</td>
<td>0.93 ± 0.04 (0.96/0.91)</td>
<td>-0.068 ± 0.56 (0.33/-0.47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 0.97 ± 0.28 (1.47/0.28)</td>
<td>1.15 ± 0.11 (1.36/0.82)</td>
<td>-0.30 ± 0.26 (0.15/-0.64)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III 0.83 ± 0.34 (1.77/0.22)</td>
<td>1.10 ± 0.18 (1.32/0.72)</td>
<td>-0.11 ± 0.39 (0.87/-0.54)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV 1.71</td>
<td>1.05</td>
<td>-0.38</td>
<td></td>
</tr>
</tbody>
</table>

Fig 7: Seasonal percentage contribution of different aerosol types over Varanasi during the study period.
nearly equal contributions, contribution from Type III is found to be transported from southern Europe (Caspean Sea region) and beyond. A closer look, however, suggests that beyond 65°E longitude in Type III, the air masses are much above the boundary layer altitudes, which is slowly reaching to lower altitudes after at around 65°E longitudes (Afghanistan/Pakistan). At this altitude, the air masses are expected to accommodate regional/urban pollutants from western IGB, to be noticed with airmass reaching to the Varanasi, contributing fine-mode particles included during the travel from 65°E till receptor-site. The contribution of Type II, as well as Type III aerosols may be mainly due to local urban-industrial emission from IGB, along with biomass burning, that are responsible for higher contribution of fine mode aerosols.

Atmospheric winds play crucial role in the aerosol loading and their spatial distribution of aerosols. Therefor, to confirm the obtained results, seasonal relationship of AOD and AE with surface winds (speed and direction) is drawn and shown in Fig 8 and Fig 9, respectively. Higher AODs were observed during all the seasons except in post-monsoon when the wind is from western azimuth (west, north west and south west) directions. During pre-monsoon period, for nearly 60% days AODs were lie between 0.6 and 1.2; and for nearly 32% days AODs were between 0.3 and 0.6. On the other hand, for more than 80% days AE was found in between 0.6 and 1.2 and for nearly 16% days, it was between 0.3 and 0.6. Apart from this, during post monsoon/winter season, mostly higher AOD value (>0.9) are associated with the winds coming from northwest, having higher AE values varied between 0.9 and 1.5. From the figure, it is confirmed that during winter season, aerosols are coming mainly from north/northwest direction with relatively higher values of AOD associated with higher values of AE. It indicates admixing of fine mode and coarse mode aerosol particles causing nearly equal contribution of Type II and Type III aerosols over the station in winter season (about 48% and 46%). During the study period, nearly 51% of AOD value lie in a range from 0.9-1.5 associated with nearly 81% of AE value in same range. Recently, Kumar et al. (2015) reported that fine mode aerosol particles associated with higher AOD over Varanasi due to long range transportation. However, on the other hand, during post-monsoon season, AOD show a wide range between 0.3 and 1.7, having higher AE, ranging from 0.9-1.36. Results clearly indicate dominance of fine mode aerosol particles as found by air mass back-trajectory analyses and seasonal contribution of inferred aerosol types.

5.4 Climate Impact of Inferred Aerosol

To understand the climate impact of the inferred aerosol types over Varanasi, aerosol radiative forcing was estimated under clear-sky conditions in short-wave region (0.25-4.0 μm) at the surface and top of the atmosphere (TOA) using spectral values of AOD, SSA and Asymmetry parameter (AP) derived from OPAC model as inputs into the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model (Ricchiazzi et al., 1998). Besides these optical parameters, surface albedo and vertical profile of atmospheric parameters (e.g. average temperature, pressure, water vapour and ozone, etc.) for the location are other crucial parameters in SBDART model. Surface albedo, which plays crucial role in forcing estimations, was obtained over the station from Aura OMI version 3 reflectivity data (at 0.50 μm wavelength). However, vertical profile of necessary atmospheric parameters is generally fixed once the model atmosphere is chosen in SBDART. Based on the prevailing meteorological conditions over Varanasi, the tropical model atmospheric profiles have been considered in present study (Singh et al., 2014). The radiative forcing calculations were performed using eight radiation streams to obtain the TOA and surface downward and upward fluxes at every 1-hr interval for a 24-hr period, with and without aerosols. Diurnally averaged radiative forcing at the TOA and surface is thus obtained as difference between net flux (down-up) with and without aerosols. Further, the resultant atmospheric forcing (ΔF) was obtained by the difference between TOA and surface forcing, which represents the amount of solar energy absorbed by aerosols in the atmosphere. Consequently, the atmospheric heating rate is calculated from the first law of thermodynamics and hydrostatic equilibrium (Liou, 2002) as

$$\frac{\partial T}{\partial t} = \frac{g}{C_p} \times \frac{\Delta F}{\Delta P} \times 24(\text{hr/day}) \times 3600(\text{sec/hr}) \quad \ldots (5)$$

where,

- $\frac{\partial T}{\partial t}$ is the heating rate in Kelvin per day (Kday$^{-1}$), g is the lapse rate and C_p is the specific heat capacity of air at constant pressure (i.e. 1006 Jkg$^{-1}$K$^{-1}$), ΔF is the estimated atmospheric forcing due to aerosols and ΔP is the atmospheric pressure difference between top and bottom boundaries of the atmosphere in which most of the aerosols occur, which is considered to be 300 hPa in the present study. Though the aerosol radiative forcing has been estimated using model derived aerosol products from OPAC, numerous factors such as scale –
height of each species, mixing state of aerosols, surface albedo and sky conditions may also influence the overall uncertainties in radiative forcing estimations (Dey and Tripathi, 2008; Singh et al., 2014) then showed a reduction in scale height from 1.2 to 0.8 km may reduce the AOD by ~10%, enhancing the surface forcing by 2 Wm\(^{-2}\) and reducing the TOA forcing by 2.6 Wm\(^{-2}\).

The total uncertainty in the estimated radiative forcing by this method has been reported to be ~15% (Dey and Tripathi, 2008; Srivastava and Ramchandran, 2013) which included the uncertainty in surface albedo. Fig 10 represent the short wave radiative forcing at top of the atmosphere (TOA), Surface and Atmospheric for inferred aerosol type. The radiative forcing at the surface is found to be negative (i.e. show net cooling effect) while in the atmosphere it is positive (i.e. show net heating effect) with relatively larger value resulting to the positive radiative forcing at TOA (i.e. show net heating effect) for all inferred aerosol types. Fig 9 reflect that Type III show high forcing at ATM (102.9 ± 10.7 Wm\(^{-2}\)) and TOA (21.7 ± 8.1 Wm\(^{-2}\)) with heating rate 2.9 ± 0.3 K day\(^{-1}\) followed by Type I (ATM: 100.8 ± 17.8 Wm\(^{-2}\) and TOA: 14.8 ± 7.6 Wm\(^{-2}\)) associated with maximum surface cooling -86 ± 16.9 Wm\(^{-2}\). Apart from this, minimum (ATM: 93.9 ± 29.4 Wm\(^{-2}\) and TOA: 14 ± 7.6 Wm\(^{-2}\)) forcing was observed for Type IV aerosol associated with maximum surface forcing (80 ± 30.7 Wm\(^{-2}\)). A positive TOA forcing is found for all aerosol type with heating rate from 2.6 ± 0.8 K day\(^{-1}\) (for Type IV) to 2.9 ± 0.30 K day\(^{-1}\) (for Type III) resulting the net heating effect and suggesting the dominance of fine mode aerosol particles mainly coming from anthropogenic emission and biomass/biofuel burning as discussed above.
Fig 9: Same as figure 8, except for AE.

Fig 10: Short-wave radiative forcing at the TOA, surface, and in the atmosphere for the inferred aerosol types.
6. Conclusion
A continuous sunphotometer measurements have been carried out at Varanasi a semi-urban station over the eastern IGB region during 2011 to understand aerosol characteristics. Using air mass back-trajectory analysis, an attempt has been made for the first time to identify different aerosol types and to examine their seasonal heterogeneity over the station. The salient results of the present study are given below:

- The local emission sources are more important than the long-range transportation over Varanasi which plays a crucial role in favorable meteorological condition.

- Varanasi experienced a high aerosol loading with annual mean AOD (at 500 nm) varied from 0.73 ± 0.31 to 0.98 ± 0.31 during the study period, with large heterogeneity in different aerosol types due to various emission sources.

- Four different aerosol types are identified at Varanasi, viz. Type I, Type II, Type III and Type IV based on air mass pathways with their annual contributions of 9.31%, 32.07%, 36.16%, and 22.46%, respectively.

- The percentage contribution of aerosol types also varies seasonally. During winter and post-monsoon seasons, Type II and Type III aerosols are dominated showing the influence of local sources as well as long range transportation. Type IV aerosols are dominated during monsoon season which are mainly influenced by air masses from the Bay of Bengal and Indian Ocean. However, during pre-monsoon season, station is experienced a mixture of aerosols types.

- Type I aerosols have maximum annual mean AOD (AE) with values of 0.98 ± 0.31 (0.93 ± 0.26) while minimum is observed for Type III (AOD: 0.75 ± 0.30 AE: 0.92 ± 0.25).

- The direct aerosol radiative forcing was found to be maximum at ATM and TOA for Type III aerosol with maximum heating rate of 2.89 ± 0.30 K day⁻¹.

Acknowledgement
The author S. Tiwari is thankful to Council of Scientific and Industrial Research (CSIR) for providing senior research fellowship. This work is partially supported by ISRO, Bangalore under ISRO-SSPS and ISRO-ARFI program. We acknowledge HYSPLIT model of NOAA-ARL for back-trajectory analysis.

References

Draxler RR and Rolph GD (2003). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. NOAA Air Resources Laboratory, Silver Spring, MD.

Mishra AK, Shibata T and Srivastava AK (2014). Synergistic approach for the aerosol monitoring and identification of types over Indo-Gangetic Basin in pre-monsoon

Sinha V, Kumar V and Sarkar C (2014). Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of

© 2018 Jakraya