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A B S T R A C T

The Multiangle Implementation of Atmospheric Correction (MAIAC) is a new generic algorithm applied to
collection 6 (C6) MODIS measurements to retrieve Aerosol Optical Depth (AOD) over land at high spatial re-
solution (1 km). This study is the first evaluation of the MAIAC AOD from MODIS Aqua (A) and Terra (T)
satellites between 2006 and 2016 over South Asia. The retrieval accuracy of MAIAC was assessed by comparing
it to ground-truth AErosol RObotic NETwork (AERONET) AOD, as well as to AOD retrieved by the two opera-
tional MODIS algorithms: Dark Target (DT) and Deep Blue (DB). MAIAC AOD showed higher spatial coverage
and retrieval frequency than either the DT or the DB AOD retrievals. The high spatial resolution of the MAIAC
retrievals enhances the capability to distinguish aerosol sources and to determine fine aerosol features, such as
wildfire smoke plumes and haze over complex geographical regions, and provides more retrievals in conditions
that are cloudy or when the surface is partially covered by snow. In comparison to AERONET AOD, MAIAC AOD
shows a better accuracy than both DT and DB AOD. A higher number of MAIAC-AERONET AOD matchups
demonstrate the capability of MAIAC to retrieve AOD over varied surfaces, different aerosol types and loadings.
Our results demonstrate high retrieval accuracy in term of the Expected Error (EE) (A/T, EE: 72.22%, 73.50%),
and low root mean square error (A/T, RMSE: 0.148, 0.164), root mean bias (RMB) (A/T, RMB: 0.978, 1.049) and
mean absolute error (MAE) (A/T, MAE: 0.098, 0.096). Moreover, MAIAC has a lower bias as a function of the
viewing geometry and the aerosol type among the three retrieval algorithms. MAIAC performed well over bright
and vegetated land surfaces, showing the highest retrieval accuracy over dense vegetation and particularly well
in retrieving smoke AOD, yet it underestimated dust AOD. In conclusion, MAIAC's ability to provide AOD at high
spatial resolution appears promising over South Asia, thus having advantage over contemporary aerosol retrieval
algorithms for epidemiological and climatological studies.
Capsule: In comparison with MODIS DT and DB AOD, and AERONET AOD, MAIAC shows improved accuracy
and lower bias over South Asia, as well as with greater spatial coverage.

1. Introduction

Aerosols are multi-component mixtures of solid and liquid particles
from a wide range of natural and anthropogenic sources, and they
evolve through different microphysical processes before being removed
from the atmosphere by wet or dry deposition. The heterogeneity in
aerosol physical, chemical, and optical properties depends on their
geological and geographical nature (Ramanathan and Ramana, 2005),
strength of sources (Banerjee et al., 2015; Singh et al., 2017a), and

different meteorological factors (Altaratz et al., 2013). Despite their
small mass and volume, aerosols have strong influence on the transfer
of solar energy through the atmosphere, thereby affecting Earth's en-
ergy budget. The interaction of aerosols with solar radiation forms the
primary basis of its impact on climate (i.e. direct effects) and cloud
formation processes and properties (i.e the aerosol-cloud indirect ef-
fect) (Seinfeld et al., 2016). In particular, absorbing aerosols can pro-
mote cloud evaporation, leading to a reduction in cloud cover (semi-
direct effect) (Hansen et al., 1997). As such, aerosols were found to
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modify the hydrological cycle (Ramanathan et al., 2001), monsoonal
pattern (Lau and Kim, 2006; Kumar et al., 2017), and thereby food
security (Banerjee et al., 2018). Furthermore, aerosols are also asso-
ciated with adverse health effects, including mortality and morbidity
(Evans et al., 2013; Kumar et al., 2015a; Banerjee et al., 2017); they
reduce visibility (Han et al., 2012), have a role in fertilization of eco-
systems (Tian and An, 2013), and reduce crop yield (Burney and
Ramanathan, 2014).

Following the development of various observational platforms, in
particular ground-based measurements and remote sensing, as well as
improved predictive models, climate-related aerosol processes are now
better understood. Recent developments in Earth-observing satellites,
both polar orbiting and geostationary platforms, enable us to quantify
the aerosol loading and properties at a much finer spatial scale and with
broader spatial and temporal coverage (Martin, 2008; Mhawish et al.,
2018; Hoff and Christopher, 2009). Designated satellite sensors such as
Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle
Imaging Spectroradiometer (MISR), Cloud-Aerosol LIdar with Ortho-
gonal Polarization (CALIOP), POLarization and Directionality of the
Earth's Reflectance (POLDER), Visible Infrared Imaging Radiometer
Suite (VIIRS) and Ozone Monitoring Instrument (OMI) (Remer et al.,
2005; Kaufman et al., 2002; Torres et al., 2007; Winker et al., 2010;
Kahn and Gaitley, 2015) provide important contributions to our un-
derstanding of the effects of aerosols on climate. Among various sen-
sors, MODIS on board the Earth Observing System (EOS) Terra and
Aqua satellites are recognized as the most extensively validated sensors
for retrieving aerosol properties (Remer et al., 2013; Levy et al., 2013;
Bilal and Nichol, 2015; Mhawish et al., 2017). MODIS employs three
independent operational aerosol retrieval algorithms: Dark Target (DT)
over land (Levy et al., 2013) for dark or vegetated surfaces, DT over
ocean (Tanré et al., 1997), and Deep Blue (DB), originally developed for
bright surfaces (Hsu et al., 2004) but later extended to global land
surface (Hsu et al., 2013). These MODIS operational algorithms are
subject to continual improvement.

Lyapustin et al. (2011a, 2011b) introduced a new generic aerosol
algorithm, the Multiangle Implementation of Atmospheric Correction
(MAIAC), which uses MODIS L1B time series measurements and image
processing and retrieves the Aerosol Optical Depths (AOD) over land at
1 km spatial resolution. Recently, MAIAC became an operational
MODIS algorithm (MCD19) with Collection 6 products available from
2000 for the entire MODIS record (e.g. https://modis-land.gsfc.nasa.

gov/MAIAC.html). The current version of MAIAC, used in this work, is
described in Lyapustin et al. (2018). Due to the coarse spatial resolution
of other standard AOD products, e.g. MODIS-DT and DB (10 km), and
the low retrieval accuracy of MODIS DT 3 km (Remer et al., 2013;
Mhawish et al., 2017; Gupta et al., 2018), the high 1 km resolution and
the general lack of “urban” bias, MAIAC has been extensively used in
the air quality and epidemiological studies (Xiao et al., 2017; Liang
et al., 2018; Di et al., 2016). Intercomparison, uncertainty estimation,
and validation of the retrieval algorithms are vital to build confidence
in the retrieved aerosol products and to recognize the accuracy and
limitations of the retrievals under different aerosol climatology and
surface cover conditions. To date, MAIAC AOD has been evaluated over
few geographical regions, including North America (Superczynski et al.,
2017) and South America (Martins et al., 2017), and used in combi-
nation with ancillary parameters to derive surface particulate matter
concentration over USA (Kloog et al., 2014; Lee et al., 2016), Mexico
City (Just et al., 2015), Italy (Stafoggia et al., 2017) and Israel (Kloog
et al., 2015). South Asia is a complex geo-climatic region that shows
high diversity in aerosol loading and optical properties, especially over
the Indo-Gangetic Plain (IGP, Sen et al., 2017; Sayer et al., 2014; Singh
et al., 2017a, 2017b, 2018). Retrieval of satellite aerosol properties is
therefore often challenging due to considerable seasonal variations in
surface reflectance and aerosol properties (Mhawish et al., 2017, 2018).
Considering these uncertainties, a first-of-its-kind effort was made to
evaluate the MAIAC AOD over South Asia using AErosol RObotic
NETwork (AERONET) ground-truth AOD. The retrieval accuracy of the
MAIAC AOD was also compared to the two operational MODIS AOD
retrieval algorithms (DT and DB). In particular, we employed a broader
perspective and evaluated MAIAC performance under varying aerosol
loading, aerosol types, surface coverage, and viewing geometry. Such a
systematic analysis has not been reported before for South Asia, and is
expected to be useful to the air quality and modeling communities, as
well as for the algorithm developers.

2. Methods

2.1. Study domain

Fig. 1 shows the geographical distribution of the selected 14
AERONET sites across South Asia. These stations are located in areas
that are influenced by different aerosol types (dust, smoke, urban

Fig. 1. South Asia study domain, with the Indo-
Gangetic plain demarcated by a yellow border.
Note. The background image shows the multi-year
annual average MAIAC NDVI, with dark green re-
presenting more vegetated areas and lighter shades
depicting brighter surfaces. Green dots represent the
location of AERONET stations used in this study.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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aerosols) and geo-climatic features (arid areas, coastal zones, elevated
land, vegetation type). South Asia is one of the most densely populated
regions on Earth and suffers from poor air quality particularly during
post-monsoon (SON) and winter (DJF, Singh et al., 2017a, 2017b).
Aerosol composition and morphology across South Asia are highly di-
verse, complex, and dynamic, due to prevalence of different sources and
varying meteorological conditions. Recently, Singh et al. (2017a) re-
viewed sources of fine particulate matter (PM2.5) across South Asia and
found considerable spatial and seasonal source variation, with an
overall dominance of vehicular emissions, industrial emissions, sec-
ondary aerosols, and biogenic sources. The region is highly affected by
pre-monsoon (MAM) mineral dust, transported from the north-western
deserts (e.g. the Thar desert) and from the dry western regions of Pa-
kistan, Afghanistan and the Arabian Peninsula (Gautam et al., 2010). In
contrast, during post-monsoon and winter the entire northern part is
affected by smog (smoke and fog) and by emissions from burning of
agricultural crop residues and waste material (Sen et al., 2017; Singh
et al., 2018).

2.2. Data

MODIS sensors on board Terra and Aqua satellites provide columnar
aerosol properties since 2000 and 2002, respectively. Being part of the
A-Train constellation, Aqua MODIS crosses the equator on 13:30 local
time while Terra crosses the equator on 10:30 local time. The MODIS
sensor has 36 spectral bands with different spatial resolutions (250, 500
and 1000m), and a 2330 km wide swath, providing near-daily global
coverage by each single instrument (T/A). The MODIS aerosol retrieval
algorithms have been updated several times and three operational al-
gorithms (DT, DB and MAIAC) are currently in use to retrieve AOD. In
the present analysis, we used collection 6 (C6) data products for all
MODIS aerosol algorithms.

2.2.1. MAIAC AOD
MAIAC processing algorithm is based on a dynamic time series

analysis that allows separating surface properties which are relatively
static during short time intervals from features that rapidly change over
time, like aerosols and clouds (Lyapustin et al., 2018). MAIAC starts
with gridding the MODIS Top-Of-Atmosphere (TOA) L1B reflectance to
1 km resolution on a fixed grid. The gridded data are split into 1200 km
tiles and placed in a queue containing from 5 (over the poles) to 16
(over the equator) days. This provides a (backward) time dimension for
each 1 km grid cell. MAIAC cloud mask is combined with the detection
of absorbing aerosols (smoke or dust) allowing MAIAC to characterize
most of the aerosol emission sources at 1 km resolution, including high
intensity plumes, without masking them as clouds.

Central to the MAIAC aerosol retrieval is characterization of the
surface reflectance spectral ratios (SRC) 0.47/2.13 and 0.47/0.55 using
the minimum reflectance method (Lyapustin et al., 2018). The code
uses MAIAC cloud mask but otherwise is run independently from the
main MAIAC processing, providing separation between the surface and
atmospheric contributions to the TOA signal. Importantly, this code
runs dynamically and updates the SRC on a continuous basis. The an-
gular dependence of the SRC is accounted for by using three angular
bins.

The AOD retrieval algorithm uses different band combinations, in-
cluding 0.47, 0.55, 0.65 and 2.13 μm, depending on the surface
brightness and the detected aerosol type (for details, see Lyapustin
et al., 2018). Aerosol information, along with the retrieved column
water vapor (CWV) from MODIS NIR measurements at 0.94 μm
(Lyapustin et al., 2014), are used for atmospheric correction and
spectral bidirectional reflectance distribution function (BRDF) retrieval.
Once the surface BRDF is derived, it is synergistically used for cloud/
cloud shadow/snow detection, determination of the aerosol type, and in
aerosol retrieval. Finally, spatio-statistical filtering of high AOD values
at 1 km allows for residual cloud detection and for overall improvement

of the aerosol and surface products.
MAIAC uses geographically prescribed aerosol models based on the

aerosol climatology obtained from AERONET. The current MAIAC
aerosol models are static and do not account for seasonal variations of
the aerosol properties, which is one of the limitations of the MAIAC C6
aerosol product. In the current study, AODs with the highest quality at
0.55 μm have been used. We also used MAIAC 8-day composite NDVI
product at 1 km resolution as a proxy of the surface cover types.

2.2.2. Dark target AOD
The MODIS DT algorithm was developed to retrieve aerosols over

dark vegetated land surfaces at 10 km spatial resolution, using statis-
tical relationship between the visible bands at 0.47 and 0.65 μm and the
shortwave infrared band at 2.12 μm to determine the surface re-
flectance (Levy et al., 2013). For AOD retrieval, the DT algorithm se-
lects suitable dark pixels (500m resolution) with 0.01 to 0.25 TOA
reflectance in the 2.12 μm channel. The selected pixels are organized
into 20× 20 (400 pixel) array and after screening out cloud, water,
snow/ice and other bright pixels, the algorithm discards the darkest
20% and the brightest 50% (in the 0.65 μm channel) pixels. The re-
flectance of the remaining pixels is averaged and used to derive the
AOD, and the retrieval quality is determined by the number of pixels
used. The DT algorithm over land uses three fine aerosol models (low-,
moderate- and highly absorbing) and one coarse aerosol model, with
the prescribed model selection depending on the season and geo-
graphical location. The C6 DT product provides AOD retrievals at two
spatial resolutions: 10 km and 3 km, using similar yet not identical re-
trieval algorithms. Namely, the difference between the 3 km and 10 km
AOD is in the selection of pixels for which the retrieval is performed. In
this study, we used the DT 10 km AOD product rather than the more
spatially resolved DT 3 km AOD due to the higher retrieval accuracy of
the former, especially over urban areas (Gupta et al., 2018; Mhawish
et al., 2017; Nichol and Bilal, 2016; Munchak et al., 2013). The re-
ported expected error (EE) of DT AOD over land is± (0.05+AOD15%)
(Levy et al., 2013).

2.2.3. Deep blue AOD
The MODIS DB algorithm was originally developed to retrieve AOD

over bright surfaces, including deserts, at 10 km spatial resolution,
utilizing the 0.412 and/or 0.47/0.65 μm wavelengths depending on the
surface type (Hsu et al., 2013; Sayer et al., 2015; Tao et al., 2017). The
C6 (enhanced) DB algorithm extends retrievals to green and dark sur-
faces and provide global AOD except over snow and ice. Over vegetated
surfaces, the DB algorithm uses statistical spectral ratios as a function of
NDVI for determining the surface reflectance, similar to the DT algo-
rithm. Over bright surfaces, it relies on static seasonal database of
spectral surface reflectance, binned in view geometry, and derived from
the previous years of MODIS measurements, based on the minimum
reflectance method. The DB algorithm selects the aerosol model as a
function of the geographical location and the season. The AOD and the
Angstrom Exponent (AE) are retrieved for fine and mixed aerosol
conditions, while AOD and the single scattering albedo (SSA) are re-
trieved when dust is detected. The DB algorithm retrieves AOD at a
1 km nominal resolution and filters data for bad quality or residual
clouds before aggregating it to 10 km, unlike the DT algorithm which
aggregates the radiance first to 10 km using the darkest eligible pixels
and only then performs aerosol retrieval.

2.2.4. AERONET
AERONET is a worldwide ground-based sun photometer network

that provides aerosol optical properties with high temporal resolution
(AOD: 5–15min, sky radiance: 30min). AERONET provides cloud
screened AOD at several wavelengths between 340 and 1640 nm with
~±0.01 accuracy at wavelengths> 440 nm and ~±0.02 at shorter
wavelengths (Holben et al., 1998). AERONET Version 2 Level 2.0
quality-controlled AOD data were compared to MODIS AOD. For this,
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AERONET AOD (AODAER) at 500 nm was interpolated to 550 nm using
AE of the 440 nm and 675 nm wavelength pair. The MODIS AOD at
550 nm was obtained using the three retrieval algorithms: MAIAC, DT
and DB. Other AERONET aerosol products, such as the AE based on the
440 nm and the 870 nm wavelengths, the SSA at four wavelengths (440,
675, 870 and 1020 nm), and the CWV were used to determine the
dominant aerosol type (Dubovik and King, 2000) and size fraction
(O'Neill et al., 2001). Based on data availability (at least 1 year), 14
AERONET stations across South Asia were used (Table S1).

2.3. Data processing

AERONET provides point AOD measurements with high temporal
resolution whereas MODIS provides spatial AOD measurements during
the satellite overpass time, at most once per day. Thus, in order to
match the AERONET AOD with the MODIS AOD, we averaged (a) the
AERONET AOD over a temporal window of± 60min around the sa-
tellite overpass time and (b) the MODIS AOD over a spatial window of
3× 3 pixels centered at each of the AERONET sites. Only the highest
quality AOD data (MAIAC: highest quality, DT: QA=3, DB: QA≥ 2)
have been used, to avoid cloud contamination and other errors in the
AOD retrieval. To avoid artifacts, the MODIS-AERONET AOD matchups
were retained only when at least two retrieved pixels were recorded
within the 3× 3 spatial window for each aerosol product and the
AERONET temporal window (T: 9.30–11.30, A: 12.30–14.30 local
time). The 3×3 pixel window translates into a 3×3 km2 averaging
area for MAIAC, regardless of the view angle, and a 30× 30 km2 area
(at nadir) for DT and DB.

Table 1 reports the MODIS and AERONET aerosol products used in
this study. Terra and Aqua MODIS geometry parameters (scattering
angle, viewing zenith angle, and relative azimuth angle) were used for
studying the angular dependence of the AOD retrieval bias. The 8-day
composite NDVI was used for examining the impact of surface cover on
AOD retrieval bias. For spatial comparison of MAIAC-, DT- and DB AOD
over South Asia, a multiyear AOD average and the retrieval frequency
were computed. To unify the spatial resolution of all the MODIS pro-
ducts, the MAIAC AOD at 1 km were resampled to 10 km, using the
nearest neighbor method. Aggregating MAIAC AOD to 10 km resolution
does not affect the accuracy of the data, since the nearest neighbor
resampling technique averages all the pixels within a 10 km grid.

Several statistics were used to assess the retrieval accuracy of the
different MODIS algorithms, including the root mean square error
(RMSE), mean absolute error (MAE), relative mean bias (RMB), and the
expected error (EE), with the later defining the radial boundaries in
which 67% of the matched AERONET and MODIS points fall. We used
the EE definition of the dark target algorithm± (0.05+0.15 AODAER).

3. Results and discussion

3.1. Spatial intercomparison of MAIAC, DT and DB

Considering the heterogeneity of aerosol sources, types, and loading
that persists over South Asia and especially over the IGP, the spatial
intercomparison between MAIAC-, DT- and DB AOD was made. The
performance of the three MODIS aerosol retrieval algorithms were ex-
amined for selected events (e.g. haze, smoke, and dust), using visual
analysis of MODIS true color images. Next, using multi-year averaging
of the annual and seasonal AOD, we investigated the spatial and tem-
poral variation of AOD retrieval, the retrieval frequency, and the spatial
coverage of the retrieval algorithms.

3.1.1. Special events
Fig. 2 shows true-color images of haze, dust, and a smoke plume, as

well as the MAIAC-, DT- and DB AOD retrieval for these aerosol types.
The IGP are frequently affected by serious haze-fog conditions during
the winter (Mhawish et al., 2017; Kumar et al., 2015b) whereas dust
storms over southwest IGP and north-northwestern India are common
during pre-monsoon (Gautam et al., 2010). Aqua MODIS true-color
image (Fig. 2a) shows thick smoke layer extending along the IGP region
on the 21 December 2016. Both MAIAC and DB succeeded to retrieve
the thick smoke AOD while DT retrievals failed under clear-sky con-
ditions. The failure of DT to retrieve heavy smoke AOD could be at-
tributed to the bright surface mask or the cloud mask. The DT algorithm
also failed to retrieve heavy dust (Fig. 2b) over both bright and dark
surfaces, in contrast with MAIAC and DB that successfully retrieved the
AOD during dust events. The presence of large dust particles in the
atmosphere reduces the TOA reflectance at 2.13 μm. Since the DT al-
gorithm assumes that the atmosphere is transparent at 2.13 μm, the VIS-
SWIR surface reflectance relationship under such conditions is poor.
Owing to its fine spatial resolution, the retrieved MAIAC AOD shows
richer spatial patterns and superior fine features, such as wildfire smoke
plume (Fig. 2c) and haze over a complex geographical region and be-
tween clouds/snow in the Kashmir valley, India (Fig. 2d). This de-
monstrates the advantage of using the MAIAC high-resolution aerosol
data for epidemiological/climatological studies.

3.1.2. Spatial and temporal variation of MODIS AOD retrievals
Significant spatial and temporal variations in aerosol loading

(Fig. 3) and the retrieval frequency (Fig. 4) are observed across South
Asia. The MAIAC and DB AOD spatial coverage are higher compared to
DT AOD due to their ability to retrieve AOD over both dark and bright
surfaces. Additionally, the high spatial resolution of MAIAC enables
retrievals of AOD over complex landscapes, such as the Baluchistan
region, the Himalayan foot-hills, the coastal line, and in between
clouds. In contrast, the DT and DB algorithms cannot retrieve fine
aerosol feature due to their inherently coarser spatial resolution
(10 km). All the algorithms showed a similar AOD spatial pattern, with
higher values over IGP (thick line boundary; area weighted mean ±

Table 1
Summary of data used for the MODIS-AERONET comparative analysis.

Instrument/products SDS name Description Resolution

AERONET Aerosol Optical Depth (V2) & AE (α)
Water (cm)
SSA_440,675,870,1020

Version 2 Direct Sun, Level 2

Version 2 Inversion, Level 2
MOD04_L2 (Terra)

MYD04_L2 (Aqua)
Optical_Depth_Land_and_Ocean
Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate

DT AOD at 550 nm over land and ocean
DB AOD at 550 nm over land

10 km

MAIACAAOT (Aqua)
MAIACTAOT (Terra)

Optical_Depth_550
AOT_QA
Scattering_Angle
RelAZ
VZA

Aerosol Optical Depth at 550 nm
Quality Assurance
Scattering Angle
Relative azimuth angle
View Zenith Angle

1 km
1 km
5 km
5 km
5 km

MAIACVI NDVI 8-day composite NDVI 1 km
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SD, MAIAC: 0.60 ± 0.10, DT: 0.63 ± 0.12, DB: 0.50 ± 0.12) com-
pared to overall South Asia (MAIAC: 0.44 ± 0.18, DT: 0.40 ± 0.17,
DB: 0.33 ± 0.16). The differences among the three algorithms are
likely due to surface reflectance assumptions and/or assumptions re-
lated to the aerosol properties. The regional coverage and range of the
AOD for the three algorithms differ considerably in both their spatial
and temporal scale (Table S2). During dominance of pre-monsoon
coarser aerosol, the spatial disagreement between the algorithms was
higher, with higher MAIAC (IGP: 0.51 ± 0.10, South Asia:
0.33 ± 0.13) and DT AOD retrievals (IGP: 0.52 ± 0.10, South Asia:
0.38 ± 0.13) almost everywhere compared to DB AOD (IGP:
0.41 ± 0.08; South Asia: 0.33 ± 0.13). The highest AOD was always
retrieved during monsoon (JJA) (South Asia; MAIAC: 0.57 ± 0.25, DT:
0.54 ± 0.25, DB: 0.38 ± 0.26), attributed mainly to hygroscopic
growth of aerosol particles (Altaratz et al., 2013). A significant varia-
tion in the mean AOD was evident over IGP during monsoon among the
three algorithms (MAIAC: 0.77 ± 0.16, DT: 0.86 ± 0.19, DB:
0.62 ± 0.21), indicating uncertainties in the aerosol optical properties
assumptions. During post-monsoon, the spatial coverage of each re-
trieval algorithm (especially of DT) improved due to the increase in the
surface vegetation cover (Fig. S1). During winter, aerosol climatology is
mainly associated with intense biomass and agricultural waste burning,
especially over the upper IGP, with similar DT AOD (IGP: 0.59 ± 0.15,
South Asia: 0.36 ± 0.19), DB AOD (IGP: 0.49 ± 0.19, South Asia:
0.33 ± 0.18), and MAIAC AOD (IGP: 0.55 ± 0.17, South Asia:
0.37 ± 0.20).

The retrieval frequencies among the three algorithms varied con-
siderably, mainly attributed to the cloud cover, surface type, and the
ability of each algorithm to retrieve different aerosol types (e.g. smoke
and dust, Fig. 4). Retrieval frequency was higher over the southwest
Indian peninsula (> 220 days/year), mainly due to minimal cloud
coverage compared to Nepal and the east and south Indian peninsula
(Cai et al., 2017). During monsoon, the high cloudiness conditions re-
duce the retrieval frequency of all the algorithms significantly, with a
comparatively higher retrieval frequency over Pakistan due to lower
cloud coverage. In general, MAIAC performed slightly better than DB in
terms of retrieval frequency, which is attributed to the higher spatial
resolution of MAIAC. MAIAC also enabled retrieval over complex geo-
graphical regions and between clouds/snow. The DT retrieval fre-
quency is low over the upper IGP, which is dominated by sparse and
non-vegetated surfaces (Fig. S1). The retrieval frequency increases
during post-monsoon, especially over Pakistan and north-west India,
with MAIAC again outperforming the DB and DT. In winter, the re-
trieval frequency remains relatively uniform (46–75 days) with max-
imum retrieval over the central Indian subcontinent (south Pakistan
and central India). Overall, MAIAC showed a higher number of re-
trievals than DT and DB in all seasons, demonstrating its capability to
retrieve AOD under different surface and aerosols type conditions. In
terms of spatial coverage, the performance of DB was very close to that
of MAIAC whereas DT showed inferior spatial coverage at low AOD
conditions over bright and sparsely vegetated land (Mhawish et al.,
2017).

Fig. 2. A comparison between MAIAC-, DT- and DB AOD retrievals for specific events (red enclosure): (a) smoke, 21 December 2016, (b) dust, 21 April 2010, (c)
forest fire, 12 March 2009, and (d) smog and in between cloud/snow cover, 5 December 2014. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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To compare the spatial and temporal variation of AOD retrievals by
the different algorithms the geographical distribution of the annual and
seasonal mean differences between MAIAC and DT AOD and between
MAIAC and DB AOD were plotted in Fig. 5. The mean difference be-
tween MAIAC and DB AOD was found to be positive over almost the
entire South Asia, with the highest discrepancies (> 0.35) observed
over arid areas (the Thar desert between India and Pakistan, Baluchi-
stan in central west Pakistan), where coarse aerosols are common. This
suggests that low DB AOD are retrieved due to the overestimation of the
surface reflectance and/or due to inaccurate assumptions of the coarse
aerosol model. The spatial variation of the differences between MAIAC
and DT AOD showed two patterns: 1) negative annual mean differences
over the northern Indian subcontinent, ranging from −0.05 (middle
IGP) to −0.35 (Indus valley plain of Pakistan, and Bangladesh), and 2)
positive annual mean differences over the rest of South Asia, ranging
from 0.05 to 0.35, and negligible differences (−0.05 to 0.05) over the
central part of IGP. Temporally, the MAIAC AOD differences against DT
and DB AOD varied, with the highest differences of both DT and DB
from MAIAC found during monsoon. The consistency between the three
algorithms was better during winter and postmonsoon, when the
aerosols are dominated by fine mode particles. Furthermore, DT
showed higher consistency with MAIAC in all the seasons over South
Asia and IGP compared to DB, with the latter showing a significant
underestimation of AOD.

3.2. Evaluation of MAIAC, DT and DB AOD against AERONET AOD

3.2.1. Evaluation of MAIAC, DT and DB AOD
The retrieval accuracy of MAIAC AOD against DT and DB AOD over

land was considered in terms of the retrievals falling within the esti-
mated uncertainty from the average (± 1σ), RMSE, RMB and MAE
(Fig. 6). MODIS AOD from both the Terra (T) and Aqua (A) satellites
was examined for consistency. The 3× 3 pixel retrieval box (averaging
window) translates into a 3×3 km2 area for MAIAC, regardless of the
view angle, and a 30× 30 km2 area for DB and DT at nadir (and grows
significantly toward the edge of the scan). Fig. 6 compares Aqua and
Terra MAIAC, DT and DB AOD against AOD retrievals from 14

AERONET stations, with descriptive statistics presented in Table 2.
Within each algorithm, the differences between the A/T MODIS AOD
were<2% (EE), 0.015 (RMSE), and 0.01 (R). In contrast, the (A/T)
AOD differences among the retrieval algorithms from a given MODIS
instrument varied considerably.

For all the scenarios, MAIAC AOD outperformed the DT and DB
AOD in terms of the fraction of the retrievals that fall within the EE, and
exceeded the satisfactory level of the total matchups falling within the
EE, with 72.22% (A, N: 6432) and 73.50% (T, N: 7227). Moreover,
MAIAC showed significantly lower RMSE (A, T: 0.148, 0.146) and MAE
(A, T: 0.098, 0.096) compared to the DT and DB (RMSE > 0.183,
MAE > 0.122), with no significant difference between the sensors (A/
T). Interestingly, both the DT and DB algorithms did not achieve sa-
tisfactory levels of retrieval (EE: 49.38–64.98%). In general, DT over-
estimated the AOD (RMB > 1), especially in monsoon, while DB un-
derestimated the AOD (RMB < 0.8), with>40% of the records falling
below the EE. The significant underestimation of DB 10 km AOD in-
dicates a considerable overestimation of the surface reflectance and/or
of the aerosol SSA, whereas the overestimation by DT is due to un-
derestimation of the surface reflectance (Mhawish et al., 2017). Unlike
DT, which can only retrieve AOD over surfaces for which the modeled
reflectance is 0.01 < ρ2.13 < 0.25, both MAIAC and DB can retrieve
AOD over any land surfaces (except snow/ice). Hence, the number of
matchups for MAIAC (A: 6432, T: 7227) and DB (A: 6027, T: 6989) is
significantly higher than for DT (A: 5229, T: 5984), with the higher
MAIAC resolution enabling more matchup points, especially over
complex land surfaces, coastlines, and in between snow and clouds
(Lyapustin et al., 2011a, 2011b). For instance, while both DB and DT
failed to retrieve AOD over the Jomsom AERONET station, which is
located at the Himalayan foothills and dominated by low aerosol
loading (mean AERONET AOD: 0.053), MAIAC was able to retrieve
AOD with 71.33% (T) and 78.57% (A) of the retrievals falling within
the EE (Table S3). Furthermore, among the 14 AERONET stations,
MAIAC achieved better retrieval accuracy (within EE) in the majority of
the stations (A: 11, T: 12), far greater than DT (A: 7, T: 9) and DB (A: 2,
T: 5). The only station for which MAIAC did not achieve satisfactory
retrieval was Dhaka, where it significantly underestimated the AOD.

Fig. 3. Spatial distribution of annual and seasonal means of MAIAC-, DT- and DB AOD, retrieved over South Asia from 2006 to 2016. The area demarcated with bold
border represents the IGP region.
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Dhaka is a highly polluted city located in the lower part of IGP and is
mainly affected by fine absorbing particles (AODAER ~ 0.75, AE: 1.18;
Mhawish et al., 2017; Singh et al., 2017a, 2017b). The significant un-
derestimated MAIAC AOD is primarily due to overestimated aerosol
SSA.

Some inconsistencies (EE difference > 10%) were observed be-
tween MODIS Aqua and Terra retrieved AOD, at few AERONET sta-
tions, e.g. Karachi, Gual Pahari and Bhola (Table S3). The retrieval
accuracy of Terra MAIAC was higher at the Bhola and Karachi
AERONET stations, while Aqua showed better results in Jaipur. The
aforementioned Terra-Aqua discrepancy is highest for DT, where the
difference in EE retrieval accuracy exceeds 10% and the RMSE
is> 0.03 in 10 AERONET stations. The Aqua and Terra DB remained

most consistent, except in the Bhola and Kathmandu AERONET sites.
The Terra-Aqua differences need further analysis on a case-by-case
basis, which is beyond the scope of this manuscript.

Fig. 7 shows the retrieval bias, i.e. the deviation of the MODIS AOD
retrieval from the AERONET AOD (AODAER). The AODAER was divided
into bins of width of 0.1 and the retrieval bias was plotted as a function
of the AOD. MAIAC AOD shows very low median bias and small quartile
range at low AOD (< 0.5), with the bias taking negative values for
higher AOD. For AOD > 0.5, the negative bias tends to be higher for
Aqua than for Terra. The DT algorithm shows discrepancies in the re-
trieval bias between Aqua and Terra, with Terra DT AOD bias higher
than Aqua DT AOD bias, especially for AOD > 0.5. The median DB
AOD bias was negative at all aerosol loading conditions. For low AOD,

Fig. 4. Multiyear (2006–2016) seasonal and the annual AOD retrieval frequency over South Asia from different MODIS retrieval algorithms: MAIAC, DT and DB. The
area demarcated by thick line is the IGP region.
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the DB negative bias was mainly associated with overestimation of the
surface reflectance, which induce AOD underestimation. For higher
aerosol loading, the assumptions related to the aerosol properties have
a larger influence on the AOD retrieval accuracy over South Asia. The
role of the surface cover and aerosol type on AOD retrieval for each
algorithm are discussed in the following sections.

Fig. 8 shows the distribution of Terra and Aqua MODIS AOD bias
with respect to AERONET AOD for all the matchup points per

algorithm-pair over South Asia. We note that the mean bias for Terra
tends toward more positive values compared to Aqua. Terra MODIS
estimated higher AODs for all the algorithms (MAIAC: 6.03%, DT:
9.57%, DB: 6.36%) compared to Aqua MODIS AOD. The Terra-Aqua
bias offset varied, with DT showing the highest offset (0.046) compared
to MAIAC (0.024) and DB (0.023). A recent study by Gupta et al. (2018)
also noted that Terra exhibited higher mean bias than Aqua. Further-
more, Sayer et al. (2015) noted small positive global-average offset

Fig. 5. Spatial distribution of multiyear (2006–2016) average differences of MAIAC and DB AOD (top row) and MAIAC and DT AOD (bottom row) AOD over South
Asia. The thick black line represents IGP.

Fig. 6. Evaluation of Aqua and Terra MODIS MAIAC 1 km, DT 10 km and DB 10 km AOD against AERONET AOD (all sites across South Asia).
Note. The solid red line is the regression line, the dash lines are the EE boundaries, and the black solid line is the 1:1 line. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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between Terra and Aqua C6 DB AOD. The offset between the Terra and
Aqua MODIS sensor might be due to various reasons including the in-
strument calibration, diurnal variability of the aerosols and of me-
teorological variables, unequal sampling of aerosol events across the
region, and the diurnal cycle of cloud which tends to be higher in the
afternoon compared to the morning (King et al., 2013). Moreover, the
diurnal cycle of clouds affects also the number of matchups with
AERONET, which we found to be higher by 12–14% for Terra than for
Aqua (morning vs. afternoon). The variation of the mean bias offset
between the algorithms is possibly tied to the assumptions about the

aerosol properties, used by the retrieval algorithms (Levy et al., 2018).

3.2.2. Angular dependence of AOD retrieval
Satellite-based aerosol retrievals are commonly associated with

multiple uncertainties of different magnitudes. Some potential errors
are related to the satellite and solar geometries, while other are in-
herently linked to the surface characterization and aerosol type/model.
Here, the influence of the viewing geometry, namely the viewing zenith
angle (VZA), scattering angle (SA), and relative azimuth angle (RAA) on
the bias in AOD retrieval was investigated. Each angle was binned into
bin size of 10° independently, and the biases calculated for each bin
averaged (Fig. 9). With reference to VZA, all the algorithms showed a
larger number of matches at the edge of the scan, with most matchups
between 40 and 60° (~54% of the total matchup points) and fewer
matches at nadir (Fig. 9a, b). Moreover, all the algorithms showed only
little dependence of the retrieval bias on the VZA, with a relatively
constant positive offset bias (Terra - Aqua) at each VZA bin for each of
the algorithms. Among the three algorithms, MAIAC appeared to have
the lowest VZA dependence and the smallest bias. With increase in VZA
(> 30°), both MAIAC and DT show VZA-AOD bias trend toward nega-
tive values while the DB bias remains negative with a negligible de-
pendence on VZA. MAIAC showed lower negative mean bias (A:
−0.019, T: −0.006) relative to DB (A: −0.111, T: −0.092), while DT
showed comparable yet positive mean bias (A: 0.016, T: 0.066). Our
findings agree with those reported over North America, where a trend
of small negative retrieval bias with VZA was reported for DT and DB
(Belle and Liu, 2016) and for MAIAC AOD (Superczynski et al., 2017).

The anisotropic properties of the surface reflectance affect the ac-
curacy of AOD retrieval algorithms that use measurements from single
view sun-synchronous orbit sensors, due to changes in the surface
brightness in response to the view direction. For instance, the surface is
generally brighter for backscattering geometry (RAA < 90°) than for

Table 2
Error statistics of MODIS/AERONET comparison across South Asia.

Algorithm N AODAE AE440–870 R RMSE RMB MAE Within EE% Above EE% Below EE%

A_MAIAC 6432 0.477 ± 0.293 0.960 ± 0.420 0.882 0.148 0.978 0.098 72.22 10.67 17.12
A_DB 6027 0.498 ± 0.297 0.986 ± 0.401 0.848 0.198 0.763 0.145 49.38 4.55 46.08
A_DT 5229 0.507 ± 0.293 1.071 ± 0.364 0.854 0.183 1.014 0.122 64.98 18.65 16.37
T_MAIAC 7227 0.480 ± 0.290 0.986 ± 0.428 0.887 0.146 1.049 0.096 73.5 14.57 11.93
T_DB 6989 0.500 ± 0.301 1.003 ± 0.403 0.861 0.192 0.802 0.139 52.11 6.97 40.92
T_DT 5984 0.513 ± 0.288 1.077 ± 0.365 0.863 0.198 1.12 0.13 63.65 27.44 8.91

Fig. 7. Box plot of Aqua (A) and Terra (T) MODIS MAIAC 1 km, DT 10 km and DB 10 km AOD bias with respect to AERONET AOD (AODAER). The black horizontal
dashed line represents zero bias and the red dotted lines represent the EE. For each box, the middle line, red dot, and upper and lower hinges represent the median,
mean, and 25th and 75th percentiles, respectively. The whiskers extend to 1.5 times the interquartile range (IQR). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Distribution of the Aqua and Terra MODIS MAIAC, DT and DB AOD bias
over South Asia with respect to AERONET AOD.
Note. Solid curves: Aqua, dotted curves: Terra, vertical dashed line: zero bias.
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forward scattering (RAA > 90°) (Roujean et al., 1992). By accounting
for surface anisotropy (BRDF), MAIAC can potentially decrease the
geometric dependence of the aerosol retrieval (Lyapustin et al., 2011b).
Fig. 9 demonstrates that the number of matchups is not uniform for
varying RAA, and that MAIAC, DT and DB all show a limited number of
matches between 70 and 110° due to the limited MODIS orbital cov-
erage (Superczynski et al., 2017). The bias in the forward scattering
direction of the three algorithms, especially DT and DB, is more sig-
nificant with the increase in the RAA. Similarly, in the backscattering
direction, MAIAC shows little dependence on RAA and low bias (A, T:
−0.01, −0.02) while larger biases are evident for DT (A, T: 0.07, 0.08)
and DB (A, T: −0.11, −0.12).

The MODIS C6 algorithms show bias that varies also with the
scattering angle. Both DT (0.05–0.20) and DB (−0.1 to −0.20) show
relatively high biases, while MAIAC exhibits smaller bias (−0.09 to
0.05). Aqua MAIAC AOD shows almost zero bias for SA < 130°, and
the bias tends to be negative at higher SA (SA > 130°: <−0.05). In
contrast, Terra MAIAC AOD exhibits a varying bias pattern, with
minimal values for 140°≤ SA≤ 160°. The SA bias dependency of DT
and DB varies between Aqua and Terra, with relatively steady positive
bias of DT for SA < 130° and increasing bias for SA > 130°, while the
DB shows negative bias at all SA and the bias tends to be more negative
at higher SA. The differences between Aqua and Terra could be at-
tributed to several factors, as discussed above. In particular, one factor
that affects the differences between Terra and Aqua retrievals is the
diurnal variation of the aerosols. Observations from different SA in-
fluence the aerosol phase function, affecting the AOD retrieval (Levy
et al., 2010; Sayer et al., 2015).

3.2.3. Aerosol size dependence of AOD retrieval
Assumptions related to the aerosol microphysical and optical

properties often induce major uncertainties in the satellite retrieval of
the TOA reflectance, especially for high aerosol loading conditions. The
performances of all the MODIS algorithms were therefore evaluated
against AERONET ground-truth observation by constraining the re-
trieval to three generic aerosol loading scenarios: (1) low AOD (≤0.2)
conditions for which the contribution of the surface reflectance to the
TOA signal is dominant, (2) moderate aerosol loading conditions

(0.2 < AOD < 0.4) for which the TOA signal is influenced by both the
surface reflectance and the aerosol, and (3) high AOD (≥0.4) condi-
tions for which the contribution of the surface reflectance to the TOA
signal is negligible and the uncertainty related to aerosol assumption is
dominant (Sayer et al., 2014). Furthermore, considering AERONET AE
as a first-order indicator of the optical dominance of fine-mode or
coarse-mode aerosols, moderate to high AOD regimes (AOD > 0.2)
were further classified into three aerosol sub-types: coarse particles
(e.g. mineral dust, AE≤ 0.7), mixed mode (a mixture of fine and coarse
aerosols, 0.7 < AE < 1.3) and fine particles (e.g. mainly anthro-
pogenic-like industrial emissions, biomass burning, etc., AE≥ 1.3;
Mhawish et al., 2017; Sayer et al., 2014). Initially, the MODIS AOD
retrieval bias was plotted as a function of the AODAER and the particle
size for all matchups points (Fig. 10), followed by considering only the
collocated set of matchups (Table 3).

In Fig. 10, the AE440–870 was binned into a bin size of 0.1, and the
retrieval bias in each corresponding bin was plotted against the AE for
AODAER < 0.2 (Fig. 10a) and AODAER > 0.2 (Fig. 10b). For low
aerosol loading conditions (AODAER≤ 0.2), the retrieval error that is
attributed to the aerosol model is small compare to the contribution of
the surface reflectance error, and the bias is relatively constant irre-
spective of the aerosol type. For low AOD (<0.2), MAIAC had higher
number of retrievals (A: 35–53%, T: 27%–60%) and a negligible mean
bias (A,T: 0.001, 0.019) whereas DB underestimated the AOD (mean
bias A, T: −0.054, −0.042) and DT had smaller absolute mean bias (A,
T: −0.016, 0.019). All the algorithms showed offset between the Terra
and Aqua MODIS instruments for AOD < 0.2, with the Terra data
positively biased. For high AODAER (AODAER > 0.2) (Fig. 10b), the
retrieval bias of all the algorithms was more dependent on the particle
size, with MAIAC showing smaller mean retrieval bias: negative (A, T:
−0.043,−0.011) when coarse aerosols were dominant and positive (A,
T: 0.018, 0.033) when fine aerosols dominated. The same bias pattern
was also observed for DB (A, T: −0.145, −0.124; coarse aerosol and A,
T:−0.068,−0.048; fine aerosol) while DT showed an opposite pattern,
with a positive mean bias (A, T: 0.076, 0.112) for coarse aerosols and a
smaller bias (A, T: −0.009, 0.041) for fine aerosols.

To compare the performance of the three algorithms under identical
atmospheric conditions, only collocated matchups were considered,

Fig. 9. Angular dependence of AOD retrieval bias of
Aqua (a, c and e) and Terra (b, d and f) MAIAC (red),
DT (green), and DB (blue) algorithms, on the
Viewing Zenith Angle, Scattering angle, and Relative
Azimuth Angle.
Note. The vertical bars represent the number of
matchups in each angle bin. The horizontal black
line represents the zero bias. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 10. Variation of the retrieval bias as a function of the Angstrom Exponent (AE) (a) for AERONET AOD < 0.2, (b) for AERONET AOD > 0.2.
Note: The black horizontal dashed line represents zero bias. The black vertical solid lines separate the coarse (AE < 0.7), mixed (0.7 < AE < 1.3) and fine
(AE > 1.3) aerosol fractions. AOD_AER represents the mean AERONET AOD, the bias represents the mean bias (∑ (MODIS AOD−AERONET AOD) / N), and the N
represents number of matchup points.
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resulting in 3970 and 4907 data points for Aqua (A) and Terra (T),
respectively (Table 3). The error statistics of the different algorithms is
almost similar for any given AOD-AE stratification. For low aerosol
loading conditions (AODAER≤ 0.2), only MAIAC and DT algorithms
achieved satisfactory retrieval accuracy (EE: 73.4–78.8%). MAIAC and
Terra DT slightly overestimated the AOD (RMB: 1.032–1.136) while the
Aqua DT underestimated the AOD (RMB: 0.838). The DB algorithm
significantly underestimated the AOD (RMB: A, T: 0.602, 0.660), sug-
gesting that the surface reflectance (of the dark surfaces) is over-
estimated.

For moderate to high aerosol loading conditions, MAIAC retrievals
were less influenced by the aerosol climatology, achieving satisfactory
retrieval (EE A, T: 72.4–82.4%), small bias (RMB A, T: 0.923–1.074)
and low RMSE (A, T: 0.079–0.166). The error statistics clearly indicate
MAIAC's small dependence on the particle size, and its superior ability
to retrieve AOD under diverse aerosol loading conditions. Under the
same scenarios for coarse aerosol, the relative mean bias remains ≥1
for DT and<1 for DB, indicating over- and under retrievals of AOD.
The DT is less sensitive to the aerosol type and its performance in re-
trieving coarse and mixed aerosols is good. In contrast, DB is more
sensitive to the particle size and obtained the highest accuracy in re-
trieving fine aerosols. For AOD > 0.4, the DB obtained more AOD
retrievals that fell within the EE for fine aerosol (EE A, T: 64.19%,
64.12%) compared to coarse aerosols (EE A, T: 44.23%, 47.77%,
Table 3).

3.3. Surface cover dependence of the retrieval accuracy

Retrieving aerosols over heterogeneous land surfaces is often chal-
lenging, since minor errors in the surface reflectance estimates may
induce large deviations in the AOD retrieval, especially for low aerosol
loading conditions (Levy et al., 2007). To address the vast and complex
land-use pattern of South Asia, the sensitivity of the MODIS aerosol
retrieval algorithms on the surface reflectance was investigated under
different aerosol loading scenarios. An eight-day composite MAIAC
Normalized Difference Vegetation Index (NDVI) was interpolated using
spline interpolation to estimate the daily NDVI. The performance of the
algorithms was evaluated both for AODAER≤ 0.2 and AODAER > 0.2,
with the surface type classified into four classes: arid surfaces
(NDVI≤ 0.2), light/-sparse vegetation (0.2 < NDVI < 0.4), moderate
vegetation cover (0.4≤NDVI < 0.6), and dense vegetation cover
(NDVI≥ 0.6).

Table 4 presents the distribution of the retrieval errors as a function
of NDVI which is used as a proxy of the surface cover types. For

AODAER≤ 0.2, with the increase in surface vegetation coverage, the
retrieval accuracy of both Aqua and Terra MAIAC increases con-
sistently, and registers the highest number of retrievals in most condi-
tions. The numbers of MAIAC AOD retrievals within the EE increased by
16% with the increase in the vegetation cover. Similarly, the DT AOD
was most accurate over densely vegetated surfaces. As shown in
Table 4, both the MAIAC (EE: 86.3–89.9%) and DT (EE: 79.4–86.1%)
algorithms showed enhanced retrieval accuracy over dark vegetated
surfaces (NDVI > 0.6) for AOD < 0.2, indicating accurate estimation
of the surface reflectance. Over dry surfaces (NDVI < 0.2), MAIAC
outperformed the DB and DT algorithms in the number of matchup
points, yet all the algorithms passed the EE retrieval threshold (67%). In
particular, poor retrieval accuracy was noted for DB, with the best ac-
curacy obtained over arid areas (NDVI < 0.2), EE: 68.2–73.3%. The
reduced accuracy (underestimation of AOD) for higher NDVI
(NDVI > 0.2), EE: 30.0–59.0%, suggests overestimation of surface re-
flectance for dark/vegetated surfaces.

For AODAER > 0.2, accurate estimation of the aerosol optical
properties has a greater impact on AOD retrieval accuracy. MAIAC
showed a higher retrieval accuracy for higher NDVI, with increasing
number of matchup points within the EE interval. This indicates good
estimation of the aerosol optical properties along with the surface re-
flectance over dark/vegetated surfaces, leading to accurate AOD re-
trieval. The MAIAC AOD retrieval accuracy over dark surfaces is at-
tributed to the spectral similarity of the BRF shape between the blue
and SWIR (2.1 μm) bands, an assumption that works well over dark
surfaces and leads to improved estimates of the surface reflectance and
of the aerosol optical properties (Lyapustin et al., 2011b). The MODIS
DT showed a higher AOD retrieval accuracy (EE: ~78%) over densely
vegetated surfaces (NDVI > 0.6) than over sparsely and moderately
vegetated areas (EE: 60.0–63.4%). The DB algorithm showed constant
error in AOD retrieval for NDVI > 0.2 (EE: 49.7–56.7%). Over arid
region (NDVI < 0.2), the DB algorithm significantly underestimated
AOD for AOD > 0.2 but was more accurate for AOD < 0.2 conditions,
indicating that the retrieval error is related mostly to the assumptions
regarding the aerosol optical properties. Coarse aerosols are common
over arid regions but the DB algorithm showed a significant under-
estimation of the AOD when the NDVI < 0.2 (see Section 3.2).

3.4. Seasonal variability of the retrieval accuracy

Previously, strong seasonality has been noted in the performance of
Aqua MODIS products (DT, DB and the merge DT-DB; Mhawish et al.,
2017), which instigated us to examine the seasonality of MAIAC AOD

Table 3
Error statistics of MODIS/AERONET comparison of AOD at 550 nm for collocated observations stratified by aerosol loading and size. The best performing algorithm
by each metric in indicated in bold.

AOD AE440–870 N R EE RMSE RMB

MAIAC DT DB MAIAC DT DB MAIAC DT DB MAIAC DT DB

<0.2 – 440 (A) 0.467 0.474 0.348 78.18 73.41 45.45 0.063 0.070 0.087 1.032 0.838 0.602
457 (T) 0.472 0.405 0.298 78.77 78.34 42.67 0.070 0.077 0.089 1.136 1.070 0.660

≥0.2, < 0.4 Coarse 247 (A) 0.488 0.540 0.378 77.73 74.49 53.44 0.085 0.094 0.129 1.046 1.017 0.721
270 (T) 0.518 0.541 0.428 74.44 69.63 54.44 0.089 0.113 0.140 1.074 1.131 0.753

Mixed 778 (A) 0.509 0.519 0.431 78.92 70.44 53.86 0.088 0.098 0.125 1.027 0.973 0.749
900 (T) 0.464 0.479 0.431 77.67 66.78 54.78 0.088 0.106 0.124 1.057 1.102 0.757

Fine 389 (A) 0.634 0.604 0.531 80.21 61.95 47.81 0.082 0.103 0.120 1.044 0.966 0.796
539 (T) 0.616 0.589 0.559 82.37 65.31 48.79 0.079 0.101 0.121 1.066 1.070 0.785

≥0.4 Coarse 459 (A) 0.741 0.745 0.671 78.43 69.93 44.23 0.141 0.168 0.224 0.923 1.101 0.725
605 (T) 0.717 0.725 0.643 78.51 61.65 47.77 0.147 0.218 0.235 0.954 1.152 0.743

Mixed 1051 (A) 0.827 0.807 0.791 72.41 65.56 54.04 0.160 0.191 0.217 0.938 1.014 0.800
1272 (T) 0.837 0.831 0.822 73.82 63.44 56.76 0.159 0.210 0.204 0.964 1.090 0.837

Fine 606 (A) 0.842 0.749 0.754 77.89 62.87 64.19 0.158 0.194 0.202 1.015 1.026 0.899
864 (T) 0.856 0.808 0.796 75.35 64.47 64.12 0.166 0.180 0.186 1.038 1.076 0.918

All AOD – 3970 (A) 0.891 0.876 0.851 76.95 67.68 52.82 0.126 0.151 0.176 0.993 0.994 0.769
4907 (T) 0.889 0.880 0.858 76.81 65.95 54.27 0.131 0.166 0.173 1.026 1.096 0.798
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(Fig. 11, Table S4). As discussed in the previous sections, the retrieval
accuracy of the three algorithms depends on the aerosol type, which
may vary spatially and temporally and is associated with different
emission sources. Fig. S2 shows the seasonal variation of the aerosol
optical properties across South Asia, using daily mean AERONET pro-
ducts. The AE440–870 was used to assess the dominant aerosol size mode,
and the spectral dependence of the SSA was used to differentiate among
absorbing and non-absorbing aerosols. The CWV was used as a proxy of
humidity to examine the impact of humidity on the aerosol optical
properties.

A notable spatial and temporal variation of the aerosol properties
and AOD values have been observed over South Asia, with all stations
showing decreasing AE values during premonsoon and monsoon, sug-
gesting the dominance of coarse aerosols. The upper IGP stations
(Karachi, Lahore and Jaipur) exhibited the highest AOD retrieval
during monsoon, as well as lower AE due to particle hygroscopic
growth (Fig. S2). The larger particle size and their moisture content
result in enhanced spectral variation of the SSA, and translates into a
higher AOD. In the middle IGP (Gual Pahari, Kanpur and Gandhi col-
lege), the AOD decreased with the fraction of the coarse particles and

mixed type aerosols prevailed. Although the CWV did not show sig-
nificant spatial variability in the monsoon season, the particle size
distribution and the AOD varied significantly, most probably due to the
variation in aerosol hygroscopicity and mixing state (i.e. composition)
across the region (Wang and Martin, 2007). The upper IGP AERONET
stations are located near the coast and are more affected by sea salt,
which is known to grow hygroscopically (Kumar et al., 2018). In the
middle and lower IGP, particles do not grow much hygroscopically, due
to wet deposition. Similarly, in the lower IGP stations (Dhaka and
Bhola) lower AOD was retrieved and the aerosol had a higher con-
tribution of fine particles. The spectral dependence of the SSA had a
slight negative slope, indicating that the contribution of scattering and
absorbing aerosols is comparable. During the winter and postmonsoon
seasons, all the AERONET stations except those in the arid regions
(Jaipur and Karachi) experienced predominantly fine absorbing aero-
sols.

In general, the coarse aerosol fraction tends to decrease from west to
east and attains the highest values over dust-laden arid areas (e.g.
Karachi and Jaipur). The positive wavelength dependency of the SSA
decreases from west to east and tends to be negative for absorbing

Table 4
Error statistics of MODIS/AERONET comparison of AOD at 550 nm stratified by MAIAC NDVI.

AODAE NDVI MAIAC DT DB

N R RMSE RMB EE N R RMSE RMB EE N R RMSE RMB EE

AOD < 0.2 NDVI < 0.2 A: 256 0.456 0.066 1.152 70.31 12 0.089 0.066 1.208 75.00 66 0.182 0.065 0.875 68.18
T: 331 0.550 0.059 1.473 73.11 33 0.594 0.060 1.256 78.79 146 0.246 0.065 0.929 73.29

0.2 < NDVI < 0.4 A: 253 0.352 0.077 1.241 70.36 155 0.426 0.070 1.059 76.13 190 0.242 0.075 0.802 58.95
T: 261 0.316 0.099 1.401 63.98 161 0.212 0.119 1.362 67.08 196 0.247 0.081 0.864 55.10

0.4 < NDVI < 0.6 A: 100 0.483 0.063 0.989 81.00 183 0.362 0.082 0.789 68.85 191 0.321 0.095 0.553 37.70
T: 110 0.332 0.085 1.123 84.55 201 0.302 0.085 0.992 76.12 207 0.214 0.098 0.587 29.95

NDVI > 0.6 A: 182 0.499 0.056 0.924 86.26 165 0.485 0.056 0.844 79.39 139 0.416 0.089 0.461 41.01
T: 149 0.532 0.058 1.001 89.93 137 0.531 0.059 1.066 86.13 122 0.390 0.081 0.518 53.28

AOD > 0.2 NDVI < 0.2 A: 1015 0.832 0.165 0.780 57.54 97 0.856 0.175 1.025 57.73 535 0.857 0.216 0.611 24.67
T: 929 0.866 0.136 0.861 67.60 181 0.937 0.184 1.185 62.43 677 0.869 0.217 0.612 30.28

0.2 < NDVI < 0.4 A: 3199 0.848 0.158 1.009 71.80 2592 0.822 0.202 1.082 63.43 3140 0.818 0.213 0.810 52.39
T: 3698 0.835 0.159 1.055 70.77 2992 0.828 0.223 1.082 59.99 3494 0.835 0.198 0.810 56.70

0.4 < NDVI < 0.6 A: 949 0.904 0.167 0.981 79.35 1544 0.834 0.188 0.948 60.56 1406 0.843 0.198 0.768 51.92
T: 1170 0.916 0.161 1.008 80.00 1748 0.859 0.190 0.806 62.01 1708 0.862 0.202 0.806 52.46

NDVI > 0.6 A: 478 0.923 0.090 0.970 86.82 481 0.876 0.137 0.981 78.79 360 0.906 0.156 0.740 50.83
T: 579 0.913 0.116 0.993 85.49 531 0.896 0.151 1.067 77.59 439 0.876 0.182 0.761 49.66

Note: In each row, the best performing algorithms by each metric in indicated in bold. Within each cell, the upper value is for Aqua while the lower one is for Terra.

Fig. 11. Seasonal variation of error statistics of MODIS/AERONET comparison of AOD at 550 nm.
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aerosols in the east. In Northern IGP (Lumbini, Pokhara, Kathmandu
and Jomsom), no significant variation of aerosol properties was evi-
dent. Temporally, during the monsoon and premonsoon periods higher
fractions of coarse particles are experienced over South Asia relative to
the winter and postmonsoon, which are dominated by fine particles.

The spatial and temporal variation of the aerosol types influences
the aerosol retrieval accuracy. During monsoon, the relative humidity is
high, resulting in large particle sizes and higher SSA (Wang and Martin,
2007). The three MODIS algorithms show higher uncertainty and
smaller number of matchup points due to higher cloud cover. The
varying uncertainty in retrieving AOD among the MODIS algorithms is
due to the different assumptions about the aerosol optical and micro-
physical properties. Terra and Aqua MAIAC show a higher number of
matchup points (22–33%) (Table S4) and a lower retrieval bias (RMB;
A, T: 1.088, 1.14) (Fig. 11a) in the monsoon season, compared to the
other algorithm that obtain smaller number of retrievals and a higher
RMB from the AERONET AOD (28.8–44.6%), suggesting that the
MAIAC dynamic aerosol model accounts better for hygroscopic growth
of aerosol particles, leading to more accurate AOD retrievals. The
number of matchup points of the MAIAC/AERONET AOD that fell
within the EE was higher than those of DT (A: 36%, T: 27%) and DB (A:
41%, T: 28%) (Fig. 11b).MAIAC also has lower RMSE (Fig. 11c). The
highest DT/DB disagreement in the retrieval accuracy was observed
during the monsoon season, due to the algorithmic discrepancies re-
garding the effect of ambient moisture on the aerosol particles (i.e.
hygroscopic growth). Specifically, the DT algorithm assumes higher
absorbance (lower SSA) of coarse particles (i.e. dust), which leads to
AOD overestimation when hygroscopic growth takes place. On the
other hand, overestimation of the SSA by the DB algorithm leads to
AOD underestimation.

3.5. MAIAC aerosol model

MAIAC uses three aerosol models, two for generic absorbing aero-
sols e.g. coarse (dust) and fine (smoke), and one for less absorbing
aerosols (background) that are prescribed in each region individually
(Lyapustin et al., 2011b). MAIAC classifies aerosols into smoke or dust
based on short wavelength absorption and the effective particle size
(Lyapustin et al., 2012). The absorption (i.e. estimated imaginary re-
fractive index) of brown carbon (in smoke) and iron compounds (in
dust) is enhanced for short wavelengths. Thus, for absorbing ambient
aerosols, the aerosol reflectance at 0.412 μm would be lower than that
predicted from the 0.466 μm and 0.646 μm channels. Initially aerosol
reflectance is calculated and evaluated using AOD that is retrieved by
the background aerosol model and a known spectral surface BRDF.
Next, using a power law spectral dependence, the Angstrom exponent is
derived and the absorption parameter is measured as the ratio of
measured to predicted aerosol reflectance at 0.412 μm. For the ab-
sorbing aerosol types (lower absorption parameter), the smoke/dust
tests are further implemented to classify the absorbing aerosols into
smoke or dust aerosol (Lyapustin et al., 2012, 2018). Considering the
extreme diverse aerosol types across South Asia, the sensitivity and
retrieval accuracy of MAIAC in detecting dust and smoke has been
evaluated by taking into account the aerosol size, absorbing behavior
and loading parameters (AE, SSA and AOD) retrieved from the
AERONET. Namely, the MODIS-AERONET collocated dataset was di-
vided into three subsets based on the detected MAIAC aerosol type:
Dust (A: 132, T: 66), Smoke (A: 932, T: 966) and Background (A: 5368,
T: 6195). Overall, all MAIAC aerosol types showed good agreement
with AERONET (R: 0.841–0.890; RMSE: 0.135–0.279; Table 5). How-
ever, for the detected smoke events MAIAC AOD showed a slightly
positive bias (RMB; A, T: 1.049, 1.051) whereas for dust events it sig-
nificantly underestimated AOD (RMB; A, T: 0.866, 0.938) indicating
lower absorbing dust in the assumed model.

Due to transboundary transport of aerosols, dust particles are often
mixed with urban aerosols (Kumar et al., 2017; Sen et al., 2017), which

subsequently change the spectral behavior of the SSA relative to pure
mineral dust (Russell et al., 2014). The performance of the MAIAC al-
gorithm in detecting dust and smoke aerosols has been examined as a
function of the particle size, utilizing AERONET AE440–870, and the
particle absorbing properties, using AERONET SSA440 (Fig.12). Most of
the detected dust showed lower SSA440, ranging between 0.85 and 0.95,
with the AE440–870 varying between 0.0 and 0.8. However, the overall
number of dust events was low, in part due to the low sensitivity of
MAIAC to detect low airborne dust loading (AOD < 0.4). Surprisingly,
larger fractions of dust were detected over Kanpur (number of dust
events - A: 47, T: 30) and Gandhi college (A: 25, T: 18) compared to
Jaipur (A: 15, T: 3). This may indicate the lower sensitivity of MAIAC to
detect dust over bright surfaces. As for smoke events, MAIAC AOD
showed good agreement with AERONET AOD, with very large number
of retrievals within the EE (75–77.5%). Indeed, Table 5 clearly indicates
that MAIAC has a higher sensitivity for detection of smoke than dust,
and that it is able to detect smoke at AOD > 0.3. For most of the de-
tected smoke events, the AE440–870 varied between 0.2 and 1.5, with
approximately 93% of the total detected smoke events showing
SSA440 < 0.93 (both Aqua and Terra). As for the 7% of the smoke
events with SSA440 > 0.93, 62–76% of these cases showed decreasing
spectral SSA with increasing wavelength, indicating the presence of
absorbing aerosols from smoldering rather than flaming sources (Reid
et al., 2005) and mixed state aerosols (Wang and Martin, 2007).
Overall, MAIAC is capable of distinguishing absorbing from non-ab-
sorbing aerosols, and has higher sensitivity in discriminating the par-
ticle size. Although only minor variation between Terra and Aqua were
observed regarding the aerosol model selection, Terra MAIAC has
shown a higher skill in retrieving smoke at low AE conditions. In days
where both dust and smoke aerosols were not detected, the regional
aerosol model of MAIAC (i.e. the background model) performed well
and was satisfactory, with>71% of retrievals within the EE.

4. Conclusions

This study presents a comprehensive evaluation of the new MAIAC
retrieval algorithm over South Asia for the years 2006–2016. We
compared MAIAC with the two operational MODIS C6 AOD retrieval
algorithms: DT and DB, and against AERONET AOD. Moreover, we
examined the consistency between the Terra and Aqua MODIS sensors
over South Asia. We utilized a 3×3 pixel window, which gives a
3×3 km2 averaging area for MAIAC, and 30×30 km2 area (at nadir)
for DT and DB retrievals centered around each AERONET station, using
a time window of± 60min around the satellite overpass time. The
retrieval accuracy was assessed under varying aerosol loading, aerosol
types, surface cover, viewing geometry, and seasonality. The model
performance was assessed using RMSE, MAE, RMB and the percentage
of retrievals falling within the EE.

A robust accuracy assessment of MAIAC, DT and DB AOD against
AERONET AOD indicated the superiority of MAIAC in terms of the
number of valid high-quality retrievals and the retrieval accuracy in
terms of the fraction falling within the EE. The MAIAC AOD showed a
very low median bias at low AOD, which with the increase in aerosol
loading appears to be negative (especially for Aqua). MAIAC was also
able to generate a richer spatial AOD pattern over varied surfaces and
showed higher capability to capture fine scale features such as wildfire
smoke plumes, haze, and dust. MAIAC was also obtained in between
clouds and snow patches, which tend to restrict the retrieval of the
other operational MODIS algorithms. We found that Terra MODIS re-
trieved higher AOD than Aqua MODIS, with a larger difference by the
DT algorithm (9.57%) than by MAIAC (6.03%) and DB (6.36%). The
mean bias between Terra MODIS AOD and AERONET AOD was more
positive than that of Aqua AOD, and the offset of the mean bias was
higher for DT (0.05) than for MAIAC and DB (0.02).

In terms of the VZA, the viewing geometry dependence of the bias
was lowest for MAIAC. This finding also holds true for the RAA and SA.
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Interestingly, the inconsistency between Aqua and Terra MODIS in the
SA dependence was noted for all the algorithms, possibly reflecting the
local diurnal variation of the aerosol type, surface reflectance, or the
atmospheric column properties (e.g. moisture profile). The AOD re-
trieval accuracy of MAIAC was analyzed as a function of the surface
cover, with MAIAC showing a higher retrieval accuracy over all surface
types compared to DT and DB. For AOD≤ 0.2, both MAIAC and DT
were more accurate in estimating the surface reflectance, whereas a
gradual decrease in the retrieval accuracy was noted for DB. For
AOD > 0.2, MAIAC showed a higher retrieval accuracy for a corre-
sponding increase in the NDVI.

Considering the diversity and magnitude of the aerosol loading over
South Asia, the retrieval accuracy was also assessed for three aerosol
loadings and types. We found minor influence of the aerosol type on the
MAIAC retrieval accuracy for AODAER≤ 0.2 but the relative bias in-
creased gradually with the increase in aerosol load. For collocated ob-
servations, MAIAC achieved satisfactory retrieval accuracy at low AOD,
showing a slight positive bias. Similar performance was also observed
under moderate to high aerosol loading conditions, asserting its su-
periority in retrieving AOD for diverse aerosol scenarios. In contrast,
the DT algorithm was less sensitive to the aerosol type and performed
very well in retrieving coarse and mixed-type aerosols. The DB algo-
rithm showed higher dependence on the aerosol type, performing best
in retrieving fine mode aerosols.

The seasonal variation of the retrieval accuracy of the MODIS al-
gorithms is governed strongly by dominant aerosol type, surface
brightness, and meteorological variables. The accuracy of the AOD re-
trievals in the monsoon season is significantly lower when applying the
DT and DB algorithms rather the MAIAC algorithm. Both the DT and DB
algorithm assumptions failed in treating hygroscopic growth of aerosol
particles during monsoon, compared to the MAIAC algorithm, which

showed higher AOD retrievals falling within the EE by (26.58–40.57%).
In other seasons, the retrieval accuracy of all algorithms was better but
MAIAC outperformed the other algorithms.

The three MAIAC aerosol models showed good agreement with the
AERONET aerosol types, in particular in distinguishing absorbing and
non-absorbing aerosols. Specifically, the smoke model performed par-
ticularly well with almost a neutral bias, while the dust model sig-
nificantly underestimated the AOD due to higher absorbing dust aero-
sols than assumed in the aerosol model. The lower sensitivity of MAIAC
dust model to detect dust over bright surfaces was noted especially in
Karachi and Jaipur.

To conclude, we found that MAIAC has superior capabilities to re-
trieve AOD over diverse surfaces, varying viewing geometry and di-
verse aerosol types over South Asia, showing better spatial coverage
and smaller bias than DT and DB algorithms when compared to the
AERONET ground-truth. MAIAC's consistent ability to provide AOD at
1 km resolution opens new perspectives in aerosol related research over
the South Asia, especially for epidemiological and climatological stu-
dies.
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Table 5
Error statistics of MODIS/AERONET comparison of AOD at 0.55 μm, stratified according to the MAIAC aerosol model.

Aerosol model N R RMSE RMB MAE Within EE% Above EE% Below EE%

Background A: 5368 0.878 0.137 0.968 0.092 71.85 10.23 17.92
T: 6195 0.890 0.135 1.05 0.091 73.56 14.43 12.01

Dust A: 132 0.841 0.250 0.866 0.203 50.00 7.58 42.42
T: 66 0.870 0.279 0.938 0.215 46.97 10.61 42.42

Smoke A: 932 0.868 0.187 1.049 0.112 77.47 13.63 8.91
T: 966 0.844 0.197 1.051 0.118 74.95 15.73 9.32

Fig. 12. Frequency distribution of MAIAC detected dust and smoke events as a function of AERONET AE, SSA and AOD over South Asia.
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